...
首页> 外文期刊>Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on >FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging
【24h】

FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging

机译:基于FPGA的可重配置处理器,用于超快速隔行超声和光声成像

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.
机译:在本文中,我们据我们所知,报告了一种独特的基于现场可编程门阵列(FPGA)的可重配置处理器,用于实时隔行共注册超声和光声成像及其在成像肿瘤动态反应中的应用。 FPGA用于控制,获取,存储,延迟和求和以及传输数据,以进行实时共配准成像。 FPGA控制定制的16通道模块的超声传输以及超声和光声数据采集过程,该模块包含所有必要的模拟和数字电路。 16通道模块是插入主板的多个模块之一。它们的波束成形输出可供数字信号处理器(DSP)使用外部存储器接口(EMIF)访问。 FPGA通过超快速重新配置和结构调整来发挥关键作用,以允许在两种成像模式之间进行实时切换,包括传输控制,激光同步,内部存储器结构,波束形成以及EMIF结构和存储器大小。它通过并行访问内部存储器和多线程处理来执行另一项任务,以减少数据传输和DSP上的处理负载。此外,由于即使在超声脉冲回波采集期间激光也会产生脉冲,因此FPGA通过适当的时分多路复用(TDM)确保激光脉冲与脉冲回波采集相距足够远。构建了一个由四个FPGA模块(64通道)组成的共同注册的超声和光声成像系统,并使用幻象靶标和体内小鼠肿瘤模型演示了其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号