首页> 美国卫生研究院文献>other >Realistic enzymology for post-translational modification: zero-order ultrasensitivity revisited
【2h】

Realistic enzymology for post-translational modification: zero-order ultrasensitivity revisited

机译:翻译后修改的现实酶学:重新审视零级超敏感度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unlimited ultrasensitivity in a kinase/phosphatase “futile cycle” has been a paradigmatic example of collective behaviour in multi-enzyme systems. However, its analysis has relied on the Michaelis-Menten reaction mechanism, which remains widely used despite a century of new knowledge. Modifying and demodifying enzymes accomplish different biochemical tasks; the donor that contributes the modifying group is often ignored without the impact of this time-scale separation being taken into account; and new forms of reversible modification are now known. We exploit new algebraic methods of steady-state analysis to reconcile the analysis of multi-enzyme systems with single-enzyme biochemistry using zero-order ultrasensitivity as an example. We identify the property of “strong irreversibility”, in which product re-binding is disallowed. We show that unlimited ultrasensitivity is preserved for a class of complex, strongly-irreversible reaction mechanisms and determine the corresponding saturation conditions. We show further that unlimited ultrasensitivity arises from a singularity in a novel “invariant” that summarises the algebraic relationship between modified and unmodified substrate. We find that this singularity also underlies knife-edge behaviour in allocation of substrate between modification states, which has implications for the coherence of futile cycles within an integrated tissue. When the enzymes are irreversible, but not strongly so, the singularity disappears in the form found here and unlimited ultrasensitivity may no longer be preserved. The methods introduced here are widely applicable to other reversible modification systems.
机译:激酶/磷酸酶“无效循环”中无限的超敏性已经成为多酶系统中集体行为的典型例子。但是,其分析依赖于Michaelis-Menten反应机制,尽管有一个世纪的新知识,该机制仍被广泛使用。修饰和降解酶可以完成不同的生化任务。在不考虑这种时标分离的影响的情况下,常常会忽略贡献修饰基团的捐助者;现在已经知道了新形式的可逆修饰。我们利用新的稳态分析的代数方法,以零级超灵敏为例,调和多酶系统与单酶生物化学的分析。我们确定“强不可逆性”的属性,即不允许产品重新绑定。我们表明,为一类复杂的,不可逆的反应机制保留了无限的超敏性,并确定了相应的饱和条件。我们进一步表明,无限的超敏性是由新颖的“不变式”中的奇异性引起的,该奇异性总结了修饰和未修饰底物之间的代数关系。我们发现这种奇异性也为修饰状态之间底物分配中的刀刃行为奠定了基础,这对整合组织内无效循环的连贯性具有影响。当酶是不可逆的但不是很不可逆时,奇异性将以此处发现的形式消失,并且不再保留无限的超敏性。本文介绍的方法可广泛应用于其他可逆修改系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号