首页> 美国卫生研究院文献>other >Large Scale Parameter Estimation Problems in Frequency-Domain Elastodynamics Using an Error in Constitutive Equation Functional
【2h】

Large Scale Parameter Estimation Problems in Frequency-Domain Elastodynamics Using an Error in Constitutive Equation Functional

机译:频域弹性动力学中的大规模参数估计问题使用本构型方程函数函数函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents the formulation and implementation of an Error in Constitutive Equations (ECE) method suitable for large-scale inverse identification of linear elastic material properties in the context of steady-state elastodynamics. In ECE-based methods, the inverse problem is postulated as an optimization problem in which the cost functional measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses. Furthermore, in a more recent modality of this methodology introduced by Feissel and Allix (2007), referred to as the Modified ECE (MECE), the measured data is incorporated into the formulation as a quadratic penalty term. We show that a simple and efficient continuation scheme for the penalty term, suggested by the theory of quadratic penalty methods, can significantly accelerate the convergence of the MECE algorithm. Furthermore, a (block) successive over-relaxation (SOR) technique is introduced, enabling the use of existing parallel finite element codes with minimal modification to solve the coupled system of equations that arises from the optimality conditions in MECE methods. Our numerical results demonstrate that the proposed methodology can successfully reconstruct the spatial distribution of elastic material parameters from partial and noisy measurements in as few as ten iterations in a 2D example and fifty in a 3D example. We show (through numerical experiments) that the proposed continuation scheme can improve the rate of convergence of MECE methods by at least an order of magnitude versus the alternative of using a fixed penalty parameter. Furthermore, the proposed block SOR strategy coupled with existing parallel solvers produces a computationally efficient MECE method that can be used for large scale materials identification problems, as demonstrated on a 3D example involving about 400,000 unknown moduli. Finally, our numerical results suggest that the proposed MECE approach can be significantly faster than the conventional approach of L2 minimization using quasi-Newton methods.
机译:本文提出了本构方程误差(ECE)方法的公式化和实现,该方法适用于在稳态弹性力学的情况下线性弹性材料属性的大规模逆辨识。在基于ECE的方法中,假定反问题是一个优化问题,其中成本函数衡量了将运动学上允许的应变和动态力学上的应力联系起来的本构方程中的差异。此外,在Feissel和Allix(2007)引入的这种方法的最新形式中,被称为Modified ECE(MECE),将测量数据作为二次惩罚项并入公式。我们表明,由二次惩罚方法理论提出的一种简单有效的惩罚项连续方案可以显着加快MECE算法的收敛速度。此外,引入了(块)连续超松弛(SOR)技术,从而能够以最小的修改使用现有的并行有限元代码来求解由MECE方法的最优性条件引起的方程组的耦合。我们的数值结果表明,所提出的方法可以成功地从局部和有噪声的测量结果重建弹性材料参数的空间分布,在2D实例中迭代次数最少为10次,在3D实例中迭代次数为50次。我们(通过数值实验)表明,与使用固定惩罚参数的替代方案相比,所提出的延续方案可以将MECE方法的收敛速度提高至少一个数量级。此外,所提出的块SOR策略与现有的并行求解器结合可产生一种计算有效的MECE方法,该方法可用于大规模材料识别问题,如涉及约400,000个未知模数的3D示例所示。最后,我们的数值结果表明,所提出的MECE方法比使用拟牛顿法的L 2 最小化的常规方法要快得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号