首页> 美国卫生研究院文献>other >Stacking of Short DNA Induces the Gyroid Cubic-to-Inverted Hexagonal Phase Transition in Lipid–DNA Complexes
【2h】

Stacking of Short DNA Induces the Gyroid Cubic-to-Inverted Hexagonal Phase Transition in Lipid–DNA Complexes

机译:短DNa诱导的堆叠螺旋状立方到倒六棱相变脂质-DNa复合物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lyotropic phases of amphiphiles are a prototypical example of self-assemblies. Their structure is generally determined by amphiphile shape and their phase transitions are primarily governed by composition. In this paper, we demonstrate a new paradigm for membrane shape control where the electrostatic coupling of charged membranes to short DNA (sDNA), with tunable temperature-dependent end-to-end stacking interactions, enables switching between the inverted gyroid cubic structure (QIIG) and the inverted hexagonal phase (HIIC). We investigated the structural shape transitions induced in the QIIG phase upon complexation with a series of sDNAs (5, 11, 24, and 48 bp) with three types of end structure (“sticky” adenine (A)–thymine (T) (dAdT) overhangs, no overhang (blunt), and “nonsticky” dTdT overhangs) using synchrotron small-angle X-ray scattering. Very short 5 bp sDNA with dAdT overhangs and blunt ends induce coexistence of the QIIG and the HIIC phase, with the fraction of QIIG increasing with temperature. Phase coexistence for blunt 5 bp sDNA is observed from 27 °C to about 65 °C, where the HIIC phase disappears and the temperature dependence of the lattice spacing of the QIIG phase indicates that the sDNA duplexes melt into single strands. The only other sDNA for which melting is observed is 5 bp sDNA with dTdT overhangs, which forms the QIIG phase throughout the studied range of temperature (27 °C to 85.2 °C). The longer 11 bp sDNA forms coexisting QIIG and HIIC phases (with the fraction of QIIG again increasing with temperature) only for “nonsticky” dTdT overhangs, while dAdT overhangs and blunt ends exclusively template the HIIC phase. For 24 and 48 bp sDNAs the HIIC phase replaces the QIIG phase at all investigated temperatures, independent of sDNA end structure. Our work demonstrates how the combined effects of sDNA length and end structure (which determine the temperature-dependent stacking length) tune the phase behavior of the complexes. These findings are consistent with the hypothesis that sDNAs and sDNA stacks with lengths comparable to or larger than the cubic unit cell length disfavor the highly curved channels present in the QIIG phase, thus driving the QIIG-to-HIIC phase transition. As the temperature is increased, the breaking of stacks due to thermal fluctuations restores increasing percentages of the QIIG phase.
机译:两亲物的溶致相是自组装的典型例子。它们的结构通常由两亲物的形状决定,它们的相变主要由组成决定。在本文中,我们展示了一种用于膜形状控制的新范例,其中带电膜与短DNA(sDNA)的静电耦合以及可调节的温度依赖性端到端堆叠相互作用,使得能够在倒置螺旋体立方结构(QII)之间进行切换 G )和六方相(HII C )。我们研究了在QII G 期与一系列具有三种末端结构(“粘性”腺嘌呤(A)的sDNA(5、11、24和48 bp)复合后诱导的结构形状转变)的过程。 )–使用同步加速器小角度X射线散射,胸腺嘧啶(T)(dAdT)悬垂,没有悬垂(钝)和“非粘性” dTdT悬垂)。具有dAdT突出端和平末端的非常短的5 bp sDNA诱导QII G 和HII C 相共存,其中一部分QII G 随着温度增加。在27°C至65°C之间观察到钝的5 bp sDNA的相共存,此时HII C 相消失,QII G 相表示sDNA双链体融合成单链。观察到融解的唯一其他sDNA是5 bp sDNA,带有dTdT突出端,在整个研究温度范围(27°C至85.2°C)中形成QII G 相。较长的11 bp sDNA形式同时存在QII G 和HII C 相(QII G 的比例再次随温度增加)仅用于“不粘手” ” dTdT突出,而dAdT突出且钝端仅作为HII C 阶段的模板。对于24和48 bp的sDNA,在所有研究温度下,HII C 相均取代QII G 相,而与sDNA末端结构无关。我们的工作证明了sDNA长度和末端结构(决定温度依赖性堆积长度)的综合作用如何调节复合物的相行为。这些发现与假说相符,即长度等于或大于立方晶胞长度的sDNA和sDNA堆栈不利于QII G 相中存在的高度弯曲的通道,从而驱动了Q II G 到H II C 的相变。随着温度升高,由于热波动引起的电池堆破裂恢复了Q II G 相的百分比增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号