首页> 美国卫生研究院文献>other >Modular Biological Function Is Most Effectively Captured by Combining Molecular Interaction Data Types
【2h】

Modular Biological Function Is Most Effectively Captured by Combining Molecular Interaction Data Types

机译:组合分子相互作用数据类型可最有效地捕获模块生物学功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large-scale molecular interaction data sets have the potential to provide a comprehensive, system-wide understanding of biological function. Although individual molecules can be promiscuous in terms of their contribution to function, molecular functions emerge from the specific interactions of molecules giving rise to modular organisation. As functions often derive from a range of mechanisms, we demonstrate that they are best studied using networks derived from different sources. Implementing a graph partitioning algorithm we identify subnetworks in yeast protein-protein interaction (PPI), genetic interaction and gene co-regulation networks. Among these subnetworks we identify cohesive subgraphs that we expect to represent functional modules in the different data types. We demonstrate significant overlap between the subgraphs generated from the different data types and show these overlaps can represent related functions as represented by the Gene Ontology (GO). Next, we investigate the correspondence between our subgraphs and the Gene Ontology. This revealed varying degrees of coverage of the biological process, molecular function and cellular component ontologies, dependent on the data type. For example, subgraphs from the PPI show enrichment for 84%, 58% and 93% of annotated GO terms, respectively. Integrating the interaction data into a combined network increases the coverage of GO. Furthermore, the different annotation types of GO are not predominantly associated with one of the interaction data types. Collectively our results demonstrate that successful capture of functional relationships by network data depends on both the specific biological function being characterised and the type of network data being used. We identify functions that require integrated information to be accurately represented, demonstrating the limitations of individual data types. Combining interaction subnetworks across data types is therefore essential for fully understanding the complex and emergent nature of biological function.
机译:大规模分子相互作用数据集有可能提供对生物学功能的全面,全系统的了解。尽管各个分子对功能的贡献可能是混杂的,但是分子功能是由分子的特定相互作用产生的,从而产生了模块化的组织。由于功能通常来自多种机制,因此我们证明使用来自不同来源的网络可以对它们进行最佳研究。实施图划分算法,我们可以确定酵母蛋白质-蛋白质相互作用(PPI),遗传相互作用和基因共调控网络中的子网。在这些子网中,我们确定了内聚的子图,我们期望它们代表不同数据类型中的功能模块。我们展示了从不同数据类型生成的子图之间的显着重叠,并显示了这些重叠可以代表由基因本体论(GO)表示的相关功能。接下来,我们研究子图和基因本体之间的对应关系。这揭示了取决于数据类型的生物过程,分子功能和细胞成分本体的不同程度的覆盖。例如,来自PPI的子图分别显示了注释的GO项的84%,58%和93%的富集。将交互数据集成到组合的网络中可以增加GO的覆盖范围。此外,GO的不同注释类型主要不与交互数据类型之一相关联。我们的结果共同表明,网络数据能否成功捕获功能关系取决于所表征的特定生物学功能和所使用网络数据的类型。我们确定需要准确表示集成信息的功能,这说明了各个数据类型的局限性。因此,将跨数据类型的交互子网组合在一起对于全面了解生物学功能的复杂性和紧急性至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号