首页> 美国卫生研究院文献>other >Retinal Conformation Governs pKa of Protonated Schiff Base in Rhodopsin Activation
【2h】

Retinal Conformation Governs pKa of Protonated Schiff Base in Rhodopsin Activation

机译:视紫红质激活时视网膜构象控制质子化席夫碱的pKa

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have explored the relationship between conformational energetics and the protonation state of the Schiff base in retinal, the covalently bound ligand responsible for activating the G protein–coupled receptor rhodopsin, using quantum chemical calculations. Guided by experimental structural determinations and large-scale molecular simulations on this system, we examined rotation about each bond in the retinal polyene chain, for both the protonated and deprotonated states that represent the dark and photoactivated states, respectively. Particular attention was paid to the torsional degrees of freedom that determine the shape of the molecule, and hence its interactions with the protein binding pocket. While most torsional degrees of freedom in retinal are characterized by large energetic barriers that minimize structural fluctuations under physiological temperatures, the C6–C7 dihedral defining the relative orientation of the β-ionone ring to the polyene chain has both modest barrier heights, and a torsional energy surface that changes dramatically with protonation of the Schiff base. This surprising coupling between conformational degrees of freedom and protonation state is further quantified by calculations of the pKa as a function of the C6–C7 dihedral angle. Notably, pKa shifts of greater than two units arise from torsional fluctuations observed in molecular dynamics simulations of the full ligand-protein-membrane system. It follows that fluctuations in the protonation state of the Schiff base occur prior to forming the activated MII state. These new results shed light on important mechanistic aspects of retinal conformational changes that are involved in the activation of rhodopsin in the visual process.
机译:我们已经通过量子化学计算探索了视网膜构象能量学与席夫碱的质子化状态之间的关系。视网膜中的席夫碱是共价结合的配体,负责激活G蛋白偶联受体视紫红质。在该系统的实验结构确定和大规模分子模拟的指导下,我们研究了视网膜多烯链中每个键的旋转,分别代表了暗态和光活化态的质子化和去质子化状态。特别要注意确定分子形状的扭转自由度,从而确定其与蛋白质结合口袋的相互作用。尽管视网膜的大多数扭转自由度的特征是较大的高能垒,可将生理温度下的结构波动降至最低,但定义β-紫罗兰酮环与多烯链相对取向的C6-C7二面体既具有适度的屏障高度,又具有扭转性能量表面随席夫碱的质子化而急剧变化。构象自由度和质子化状态之间的这种令人惊讶的耦合进一步通过计算pKa与C6-C7二面角的函数来进一步量化。值得注意的是,大于2个单位的pKa位移是由在完整配体-蛋白质-膜系统的分子动力学模拟中观察到的扭转波动引起的。因此,在形成活化的MII状态之前,席夫碱的质子化状态发生波动。这些新的结果揭示了在视力过程中视紫红质的活化所涉及的视网膜构象变化的重要机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号