首页> 美国卫生研究院文献>other >Crystal structures of CaSiO3 polymorphs control growth and osteogenic differentiation of human mesenchymal stem cells on bioceramic surfaces
【2h】

Crystal structures of CaSiO3 polymorphs control growth and osteogenic differentiation of human mesenchymal stem cells on bioceramic surfaces

机译:CaSiO3多晶型物的晶体结构控制生物陶瓷表面上人间充质干细胞的生长和成骨分化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The repair and replacement of damaged or diseased human bone tissue requires a stable interface between the orthopedic implant and living tissue. The ideal material should be both osteoconductive (promote bonding to bone) and osteoinductive (induce osteogenic differentiation of cells and generate new bone). Partially resorbable bioceramic materials with both properties are developed by expensive trial-and-error methods. Structure–reactivity relationships for predicting the osteoinductive properties of ceramics would significantly increase the efficiency of developing materials for bone tissue engineering. Here we propose the novel hypothesis that the crystal structure of a bioceramic controls the release rates, subsequent surface modifications due to precipitation of new phases, and thus, the concentrations of soluble factors, and ultimately, the attachment, viability and osteogenic differentiation of human Mesenchymal Stem Cells (hMSCs). To illustrate our hypothesis, we used two CaSiO3 polymorphs, pseudo-wollastonite (psw, β-CaSiO3) and wollastonite (wol, α-CaSiO3) as scaffolds for hMSC culture. Polymorphs are materials which have identical chemical composition and stoichiometry, but different crystal structures. We combined the results of detailed surface characterizations, including environmental Scanning Electron Microscopy (SEM) back-scattered imaging, and spot-analysis and 2D elemental mapping by SEM-Energy Dispersive X-ray (SEM-EDX), High Resolution Transmission Electron Microscopy (HRTEM) and surface roughness analysis; culture medium solution analyses; and molecular/genetic assays from cell culture. Our results confirmed the hypothesis that the psw polymorph, which has a strained silicate ring structure, is more osteoinductive than the wol polymorph, which has a more stable, open silicate chain structure. The observations could be attributed to easier dissolution (resorption) of psw compared to wol, which resulted in concentration profiles that were more osteoinductive for the former. Thus, we showed that crystal structure is a fundamental parameter to be considered in the intelligent design of pro-osteogenic, partially resorbable bioceramics.
机译:受损或患病的人体骨组织的修复和替换需要整形外科植入物和活组织之间的稳定界面。理想的材料应该既具有骨传导性(促进与骨骼的结合)又具有骨诱导性(诱导细胞的成骨分化并产生新的骨骼)。具有两种性质的可部分吸收的生物陶瓷材料是通过昂贵的反复试验方法开发的。用于预测陶瓷的骨诱导特性的结构-反应关系将显着提高开发用于骨组织工程的材料的效率。在这里,我们提出了一种新的假设,即生物陶瓷的晶体结构控制释放速率,由于新相的沉淀而导致的随后的表面修饰,以及可溶性因子的浓度,最终控制人间质的附着,活力和成骨分化。干细胞(hMSC)。为了说明我们的假设,我们使用了两种CaSiO3多晶型物,假硅灰石(psw,β-CaSiO3)和硅灰石(wol,α-CaSiO3)作为hMSC培养的支架。多晶型物是具有相同化学组成和化学计量但具有不同晶体结构的材料。我们结合了详细的表面表征结果,包括环境扫描电子显微镜(SEM)背向散射成像,以及通过SEM能量色散X射线(SEM-EDX),高分辨率透射电子显微镜( HRTEM)和表面粗糙度分析;培养基溶液分析;和细胞培养的分子/遗传检测。我们的结果证实了以下假设:具有应变硅酸盐环结构的psw多晶型物比具有更稳定,开放的硅酸盐链结构的wol多晶型物更具骨诱导性。与wol相比,这些观察结果可能归因于psw的溶解(再吸收)更容易,从而导致浓度分布对前者更具骨诱导性。因此,我们表明晶体结构是促成骨,部分可吸收的生物陶瓷的智能设计要考虑的基本参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号