首页> 美国卫生研究院文献>other >Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo
【2h】

Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo

机译:全基因组的RNA结构探测揭示了体内mRNA结构的主动展开

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

RNA plays a dual role as an informational molecule and a direct effector of biological tasks. The latter function is enabled by RNA’s ability to adopt complex secondary and tertiary folds and thus has motivated extensive computational and experimental efforts for determining RNA structures. Existing approaches for evaluating RNA structure have been largely limited to in vitro systems, yet the thermodynamic forces which drive RNA folding in vitro may not be sufficient to predict stable RNA structures in vivo. Indeed, the presence of RNA binding proteins and ATP-dependent helicases can influence which structures are present inside cells. Here we present an approach for globally monitoring RNA structure in native conditions in vivo with single nucleotide precision. This method is based on in vivo modification with dimethyl sulfate (DMS), which reacts with unpaired adenine and cytosine residues, followed by deep sequencing to monitor modifications. Our data from yeast and mammalian cells are in excellent agreement with known mRNA structures and with the high-resolution crystal structure of the Saccharomyces cerevisiae ribosome. Comparison between in vivo and in vitro data reveals that in rapidly dividing cells there are vastly fewer structured mRNA regions in vivo than in vitro. Even thermostable RNA structures are often denatured in cells, highlighting the importance of cellular processes in regulating RNA structure. Indeed, analysis of mRNA structure under ATP-depleted conditions in yeast reveals that energy-dependent processes strongly contribute to the predominantly unfolded state of mRNAs inside cells. Our studies broadly enable the functional analysis of physiological RNA structures and reveal that, in contrast to the Anfinsen view of protein folding, thermodynamics play an incomplete role in determining mRNA structure in vivo.
机译:RNA充当信息分子和生物学任务的直接效应器的双重作用。后一种功能由于RNA能够采用复杂的二级和三级折叠而得以实现,因此激发了广泛的计算和实验确定RNA结构的努力。现有的评估RNA结构的方法在很大程度上仅限于体外系统,但是在体外驱动RNA折叠的热力学力可能不足以预测体内稳定的RNA结构 。实际上,RNA结合蛋白和ATP依赖解旋酶的存在会影响细胞内部存在的结构。在这里,我们提出一种在自然条件下以单核苷酸精度整体监测RNA结构的方法。该方法基于硫酸二甲酯(DMS)的体内修饰,该修饰与未配对的腺嘌呤和胞嘧啶残基反应,然后进行深度测序以监测修饰。我们从酵母和哺乳动物细胞获得的数据与已知的mRNA结构以及酿酒酵母核糖体的高分辨率晶体结构 非常吻合。体内和体外数据之间的比较表明,在快速分裂的细胞中,体内的结构化mRNA区域远少于体外。甚至热稳定的RNA结构也经常在细胞中变性,突出了细胞过程在调节RNA结构中的重要性。确实,在酵母中ATP耗尽的条件下对mRNA结构的分析表明,依赖能量的过程强烈促进了细胞内mRNA的主要展开状态。我们的研究广泛地实现了生理学RNA结构的功能分析,并揭示了与Anfinsen的蛋白质折叠观点相反,热力学在体内确定mRNA结构方面起着不完全的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号