首页> 美国卫生研究院文献>other >Effects of Outer Membrane Vesicle Formation Surface-Layer Production and Nanopod Development on the Metabolism of Phenanthrene by Delftia acidovorans Cs1-4
【2h】

Effects of Outer Membrane Vesicle Formation Surface-Layer Production and Nanopod Development on the Metabolism of Phenanthrene by Delftia acidovorans Cs1-4

机译:外膜囊泡的形成表面层的产生和纳米荚的发育对酸代尔夫特菌Cs1-4代谢菲的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanopods are extracellular structures arising from the convergence of two widely distributed bacterial characteristics: production of outer membrane vesicles (OMV) and formation of surface layers (S-layers). Nanopod production is driven by OMV formation, and in Delftia acidovorans Cs1-4 growth on phenanthrene induces OMVanopod formation. While OMV production has been associated with many functions, particularly with pathogens, linkage to biodegradation has been limited to a membrane stress response to lipophilic compounds. The objectives of this study were to determine: 1.) Whether induction of nanopod formation was linked to phenanthrene metabolism or a non-specific membrane stress response, and 2.) The relative importance of OMVanopod formation vs. formation of the S-layer alone to phenanthrene utilization. Membrane stress response was investigated by quantifying nanopod formation following exposure to compounds that exceeded phenanthrene in membrane stress-inducing potential. Naphthalene did not induce nanopod formation, and toluene was a weak inducer compared to phenanthrene (two- vs. six-fold increase, respectively). Induction of nanopod formation by growth on phenanthrene was therefore linked to phenanthrene metabolism and not a membrane stress response. Impacts on phenanthrene biodegradation of OMVanopod production vs. S-layer formation were assessed with D. acidovorans Cs1-4 mutants deficient in S-layer formation or OMVanopod production. Both mutants had impaired growth on phenanthrene, but the loss of OMVanopod production was more significant than loss of the S-layer. The S-layer of D. acidovorans Cs1-4 did not affect phenanthrene uptake, and its primary role in phenanthrene biodegradation process appeared to be enabling nanopod development. Nanopods appeared to benefit phenanthrene biodegradation by enhancing cellular retention of metabolites. Collectively, these studies established that nanopod/OMV formation was an essential characteristic of the D. acidovorans Cs1-4 phenanthrene degradation process. This report thus established a new dimension in the area of biodegradation, namely, the involvement of extracellular structures as elements supporting metabolic processes underlying biodegradation.
机译:纳米脚是由两个广泛分布的细菌特征融合而成的细胞外结构:外膜囊泡(OMV)的产生和表面层(S层)的形成。 Nanopod的产生是由OMV形成驱动的,在Delftia acidovorans Cs1-4上菲的生长会诱导OMV / nanopod的形成。虽然OMV的产生与许多功能有关,特别是与病原体有关,但与生物降解的联系仅限于对亲脂性化合物的膜胁迫反应。这项研究的目的是确定:1​​.)纳足形成的诱导是否与菲的代谢或非特异性的膜应力反应有关,以及2.)OMV /纳足类形成与S-形成的相对重要性单独使用磷层可提高菲的利用率。通过定量暴露于膜应力诱导电位中超过菲的化合物后形成纳米荚的数量来研究膜应力响应。萘不诱导纳米荚的形成,与菲相比,甲苯是弱的诱导剂(分别增加了2倍至6倍)。因此,通过在菲上生长来诱导纳足形成与菲的代谢有关,而不与膜的胁迫反应有关。用缺乏S层形成或OMV /纳米足类生产的嗜酸D. acidovorans Cs1-4突变体评估了OMV /纳米足类生产相对于S层形成对菲生物降解的影响。两种突变体均具有不利的菲生长,但是OMV /纳米足类产物的损失比S层的损失更为显着。 D. acidovorans Cs1-4的S层不影响菲的吸收,其在菲生物降解过程中的主要作用似乎是使纳米荚的发展成为可能。纳米脚似乎通过增强代谢物的细胞滞留而有益于菲的生物降解。总的来说,这些研究确定了纳米荚/ OMV的形成是嗜酸线虫D. acidovorans Cs1-4菲降解过程的基本特征。因此,该报告确立了生物降解领域的一个新维度,即细胞外结构作为支持生物降解基础代谢过程的元素。

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(9),3
  • 年度 -1
  • 页码 e92143
  • 总页数 6
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号