首页> 美国卫生研究院文献>other >Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture
【2h】

Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture

机译:生物反应器系统的开发和验证用于器官培养中整个人椎间盘的动态加载和机械表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 hours of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques.
机译:椎间盘退变(IVD)是背痛的常见原因,缺乏模拟人类状况的模型系统使开发疗法的尝试受挫。人类IVD器官培养模型可以解决这个问题,但是当前的模型受到限制,因为移除了椎骨终板以维持细胞生存力,未施加生理负荷,并且未测量机械行为。这项研究旨在(i)建立从完整椎体终板进行尸检中分离人类IVD的方法,以及(ii)开发和验证用于人类或牛IVD的器官培养物加载系统。在死后48小时内从尸体中分离出具有完整终板的人IVD,并培养长达21天。 IVD在细胞核和环区域仍具有约80%的细胞活力。设计并构建了一个动态加载系统,该系统可以同时培养9个牛或6个人的IVD,同时施加模拟的生理负载(最大力:4kN)并测量IVD力学行为。加载系统准确地应用了动态加载方式(RMS误差<2.5N和总谐波失真<2.45%),并精确评估了橡胶和牛IVD的机械性能。牛IVD在整个3周的培养期内保持其机械行为并保留了> 85%的活细胞。该器官培养物加载系统可以紧密模拟生理条件,并用于研究活人和牛IVD对机械和化学挑战的反应并筛选治疗性修复技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号