首页> 美国卫生研究院文献>other >Advanced Glycation End-Products Reduce Collagen Molecular Sliding to Affect Collagen Fibril Damage Mechanisms but Not Stiffness
【2h】

Advanced Glycation End-Products Reduce Collagen Molecular Sliding to Affect Collagen Fibril Damage Mechanisms but Not Stiffness

机译:先进的糖基化终产物减少了胶原蛋白分子的滑动从而影响胶原蛋白原纤维的损伤机制但不影响硬度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Advanced glycation end-products (AGE) contribute to age-related connective tissue damage and functional deficit. The documented association between AGE formation on collagens and the correlated progressive stiffening of tissues has widely been presumed causative, despite the lack of mechanistic understanding. The present study investigates precisely how AGEs affect mechanical function of the collagen fibril – the supramolecular functional load-bearing unit within most tissues. We employed synchrotron small-angle X-ray scattering (SAXS) and carefully controlled mechanical testing after introducing AGEs in explants of rat-tail tendon using the metabolite methylglyoxal (MGO). Mass spectrometry and collagen fluorescence verified substantial formation of AGEs by the treatment. Associated mechanical changes of the tissue (increased stiffness and failure strength, decreased stress relaxation) were consistent with reports from the literature. SAXS analysis revealed clear changes in molecular deformation within MGO treated fibrils. Underlying the associated increase in tissue strength, we infer from the data that MGO modified collagen fibrils supported higher loads to failure by maintaining an intact quarter-staggered conformation to nearly twice the level of fibril strain in controls. This apparent increase in fibril failure resistance was characterized by reduced side-by-side sliding of collagen molecules within fibrils, reflecting lateral molecular interconnectivity by AGEs. Surprisingly, no change in maximum fibril modulus (2.5 GPa) accompanied the changes in fibril failure behavior, strongly contradicting the widespread assumption that tissue stiffening in ageing and diabetes is directly related to AGE increased fibril stiffness. We conclude that AGEs can alter physiologically relevant failure behavior of collagen fibrils, but that tissue level changes in stiffness likely occur at higher levels of tissue architecture.
机译:晚期糖基化终产物(AGE)会导致与年龄相关的结缔组织损伤和功能缺陷。尽管缺乏机理上的理解,但据推测,胶原蛋白上的AGE形成与相关的组织进行性硬化之间的相关性被广泛认为是起因的。本研究精确地研究了AGEs如何影响胶原纤维的机械功能-多数组织中的超分子功能负荷单位。在使用代谢产物甲基乙二醛(MGO)将鼠尾草腱的外植体中引入AGE后,我们采用了同步加速器小角度X射线散射(SAXS)和仔细控制的机械测试。质谱和胶原蛋白荧光证实了该处理过程中AGEs的大量形成。组织的相关机械变化(增加的刚度和破坏强度,降低的应力松弛)与文献报道一致。 SAXS分析显示,经MGO处理的原纤维内分子变形发生明显变化。在相关的组织强度增加的基础上,我们从数据中推断出,MGO修饰的胶原蛋白原纤维通过将完整的四分之一交错构型维持在对照组原纤维应变水平的近两倍,从而支持更高的失败负荷。原纤维抗性的这种明显增加的特征在于胶原蛋白分子在原纤维内的并排滑动减少,反映了AGEs的横向分子互连性。出人意料的是,最大的原纤维模量(2.5 GPa)的变化并没有伴随着原纤维破坏行为的变化,这与广泛的假设相矛盾,该假设是衰老和糖尿病中组织变硬与AGE增加的原纤维硬度直接相关。我们得出结论,AGEs可以改变胶原纤维的生理相关的衰竭行为,但是组织水平的刚度变化可能发生在更高水平的组织结构中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号