首页> 美国卫生研究院文献>other >Top-down formation of fullerenes in the interstellar medium
【2h】

Top-down formation of fullerenes in the interstellar medium

机译:在星际介质中自上而下形成富勒烯

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fullerenes have been recently detected in various circumstellar and interstellar environments, raising the question of their formation pathway. It has been proposed that they can form at the low densities found in the interstellar medium by the photo-chemical processing of large polycyclic aromatic hydrocarbons (PAHs). Following our previous work on the evolution of PAHs in the NGC 7023 reflection nebula, we evaluate, using photochemical modeling, the possibility that the PAH C66H20 (i.e. circumovalene) can lead to the formation of C60 upon irradiation by ultraviolet photons. The chemical pathway involves full dehydrogenation of C66H20, folding into a floppy closed cage and shrinking of the cage by loss of C2 units until it reaches the symmetric C60 molecule. At 10” from the illuminating star and with realistic molecular parameters, the model predicts that 100% of C66H20 is converted into C60 in ~ 105 years, a timescale comparable to the age of the nebula. Shrinking appears to be the kinetically limiting step of the whole process. Hence, PAHs larger than C66H20 are unlikely to contribute significantly to the formation of C60, while PAHs containing between 60 and 66 C atoms should contribute to the formation of C60 with shorter timescales, and PAHs containing less than 60 C atoms will be destroyed. Assuming a classical size distribution for the PAH precursors, our model predicts absolute abundances of C60 are up to several 10−4 of the elemental carbon, i.e. less than a percent of the typical interstellar PAH abundance, which is consistent with observational studies. According to our model, once formed, C60 can survive much longer (> 107 years for radiation fields below G0 = 104) than other fullerenes because of the remarkable stability of the C60 molecule at high internal energies. Hence, a natural consequence is that C60 is more abundant than other fullerenes in highly irradiated environments.
机译:最近在各种星际和星际环境中都检测到了富勒烯,这引发了它们形成途径的问题。已经提出它们可以通过大多环芳烃(PAHs)的光化学处理以星际介质中发现的低密度形成。在我们先前关于NGC 7023反射星云中PAHs演化的工作之后,我们使用光化学模型评估了PAH C66H20(即环戊烯)在紫外线光子照射下可导致C60形成的可能性。化学途径包括C66H20的完全脱氢,折叠成松散的密闭笼状结构,以及由于失去C2单元而使笼状结构收缩直至到达对称的C60分子。该模型预测,距发光恒星10英寸远且具有逼真的分子参数,该模型预测C66H20在约10 5 年内将100%转化为C60,这一时间尺度与星云的年龄相当。收缩似乎是整个过程的动力学限制步骤。因此,大于C66H20的PAH不太可能对C60的形成做出显着贡献,而包含60至66个C原子的PAH应以较短的时标对C60的形成做出贡献,而少于60个C原子的PAH将被破坏。假设PAH前体具有经典的粒径分布,我们的模型预测C60的绝对丰度最多可达元素碳的10 −4 ,即不到典型星际PAH丰度的百分比,即与观察研究一致。根据我们的模型,一旦形成,C60的存活时间(对于低于G 0 = 10 4 的辐射场> 1​​0 7 年)比其他富勒烯是因为C 60 分子在高内能下具有出色的稳定性。因此,自然的结果是在高度辐照的环境中,C 60 比其他富勒烯更为丰富。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号