首页> 美国卫生研究院文献>other >Predicting Classifier Performance with Limited Training Data: Applications to Computer-Aided Diagnosis in Breast and Prostate Cancer
【2h】

Predicting Classifier Performance with Limited Training Data: Applications to Computer-Aided Diagnosis in Breast and Prostate Cancer

机译:用有限的训练数据预测分类器的性能:在乳腺癌和前列腺癌的计算机辅助诊断中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Clinical trials increasingly employ medical imaging data in conjunction with supervised classifiers, where the latter require large amounts of training data to accurately model the system. Yet, a classifier selected at the start of the trial based on smaller and more accessible datasets may yield inaccurate and unstable classification performance. In this paper, we aim to address two common concerns in classifier selection for clinical trials: (1) predicting expected classifier performance for large datasets based on error rates calculated from smaller datasets and (2) the selection of appropriate classifiers based on expected performance for larger datasets. We present a framework for comparative evaluation of classifiers using only limited amounts of training data by using random repeated sampling (RRS) in conjunction with a cross-validation sampling strategy. Extrapolated error rates are subsequently validated via comparison with leave-one-out cross-validation performed on a larger dataset. The ability to predict error rates as dataset size increases is demonstrated on both synthetic data as well as three different computational imaging tasks: detecting cancerous image regions in prostate histopathology, differentiating high and low grade cancer in breast histopathology, and detecting cancerous metavoxels in prostate magnetic resonance spectroscopy. For each task, the relationships between 3 distinct classifiers (k-nearest neighbor, naive Bayes, Support Vector Machine) are explored. Further quantitative evaluation in terms of interquartile range (IQR) suggests that our approach consistently yields error rates with lower variability (mean IQRs of 0.0070, 0.0127, and 0.0140) than a traditional RRS approach (mean IQRs of 0.0297, 0.0779, and 0.305) that does not employ cross-validation sampling for all three datasets.
机译:临床试验越来越多地将医学成像数据与监督分类器结合使用,其中监督分类器需要大量训练数据才能对系统进行准确建模。但是,在试验开始时基于较小和更易访问的数据集选择的分类器可能会产生不准确且不稳定的分类性能。在本文中,我们旨在解决临床试验分类器选择中的两个常见问题:(1)根据从较小数据集计算出的错误率预测大型数据集的预期分类器性能;(2)根据预期的性能选择适当的分类器更大的数据集。我们提出了一个通过使用随机重复采样(RRS)和交叉验证采样策略,仅使用有限数量的训练数据进行分类器比较评估的框架。随后通过与在较大数据集上执行的留一法交叉验证的比较来验证外推错误率。合成数据以及三种不同的计算成像任务均显示了随着数据集大小的增加而预测错误率的能力:检测前列腺组织病理学中的癌性图像区域,区分乳房组织病理学中的高低级癌症以及检测前列腺磁学中的癌性元素共振光谱。对于每个任务,探索了3个不同的分类器(k近邻,朴素贝叶斯,支持向量机)之间的关系。根据四分位间距(IQR)进行的进一步定量评估表明,与传统的RRS方法(平均IQR为0.0297、0.0779和0.305)相比,我们的方法始终产生较低的变异率(平均IQR为0.0070、0.0127和0.0140)。没有对所有三个数据集使用交叉验证抽样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号