首页> 美国卫生研究院文献>Medical Physics >Classifier performance prediction for computer-aided diagnosis using a limited dataset
【2h】

Classifier performance prediction for computer-aided diagnosis using a limited dataset

机译:使用有限数据集进行计算机辅助诊断的分类器性能预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a practical classifier design problem, the true population is generally unknown and the available sample is finite-sized. A common approach is to use a resampling technique to estimate the performance of the classifier that will be trained with the available sample. We conducted a Monte Carlo simulation study to compare the ability of the different resampling techniques in training the classifier and predicting its performance under the constraint of a finite-sized sample. The true population for the two classes was assumed to be multivariate normal distributions with known covariance matrices. Finite sets of sample vectors were drawn from the population. The true performance of the classifier is defined as the area under the receiver operating characteristic curve (AUC) when the classifier designed with the specific sample is applied to the true population. We investigated methods based on the Fukunaga–Hayes and the leave-one-out techniques, as well as three different types of bootstrap methods, namely, the ordinary, 0.632, and 0.632+ bootstrap. The Fisher’s linear discriminant analysis was used as the classifier. The dimensionality of the feature space was varied from 3 to 15. The sample size n2 from the positive class was varied between 25 and 60, while the number of cases from the negative class was either equal to n2 or 3n2. Each experiment was performed with an independent dataset randomly drawn from the true population. Using a total of 1000 experiments for each simulation condition, we compared the bias, the variance, and the root-mean-squared error (RMSE) of the AUC estimated using the different resampling techniques relative to the true AUC (obtained from training on a finite dataset and testing on the population). Our results indicated that, under the study conditions, there can be a large difference in the RMSE obtained using different resampling methods, especially when the feature space dimensionality is relatively large and the sample size is small. Under this type of conditions, the 0.632 and 0.632+ bootstrap methods have the lowest RMSE, indicating that the difference between the estimated and the true performances obtained using the 0.632 and 0.632+ bootstrap will be statistically smaller than those obtained using the other three resampling methods. Of the three bootstrap methods, the 0.632+ bootstrap provides the lowest bias. Although this investigation is performed under some specific conditions, it reveals important trends for the problem of classifier performance prediction under the constraint of a limited dataset.
机译:在实际的分类器设计问题中,真实总体通常是未知的,可用样本是有限大小的。一种常见的方法是使用重采样技术来估计将使用可用样本进行训练的分类器的性能。我们进行了蒙特卡洛模拟研究,比较了不同重采样技术在训练分类器和预测有限大小样本约束下的性能方面的能力。假定这两个类别的真实总体是具有已知协方差矩阵的多元正态分布。从总体中抽取了有限的样本矢量集。当使用特定样本设计的分类器应用于真实种群时,分类器的真实性能定义为接收器工作特性曲线(AUC)下的面积。我们研究了基于Fukunaga-Hayes和留一法技术以及三种不同类型的引导程序方法的方法,即普通,0.632和0.632+引导程序。 Fisher的线性判别分析用作分类器。特征空间的维数从3到15不等。来自正类的样本大小n2在25和60之间变化,而来自负类的样本数等于n2或3n2。每个实验都是使用从真实种群中随机抽取的独立数据集进行的。在每种模拟条件下使用总共1000个实验,我们比较了相对于真实AUC(通过在AUC上训练获得的)使用不同的重采样技术估算出的AUC的偏差,方差和均方根误差(RMSE)有限数据集和总体测试)。我们的结果表明,在研究条件下,使用不同的重采样方法获得的RMSE可能会有很大差异,尤其是当特征空间维数相对较大且样本量较小时。在这种条件下,0.632和0.632+引导程序的RMSE最低,这表明使用0.632和0.632+引导程序获得的估计性能与真实性能之间的差异将在统计学上小于使用其他三种重采样方法获得的性能。 。在三种自举方法中,0.632 +的自举提供了最低的偏差。尽管此调查是在某些特定条件下进行的,但它揭示了在有限数据集约束下分类器性能预测问题的重要趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号