首页> 美国卫生研究院文献>other >Fatigue-Induced Microdamage in Cancellous Bone Occurs Distant from Resorption Cavities and Trabecular Surfaces
【2h】

Fatigue-Induced Microdamage in Cancellous Bone Occurs Distant from Resorption Cavities and Trabecular Surfaces

机译:疲劳引起的松质骨微损伤远不同于吸收腔和骨小梁表面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Impaired bone toughness is increasingly recognized as a contributor to fragility fractures. At the tissue level, toughness is related to the ability of bone tissue to resist the development of microscopic cracks or other tissue damage. While most of our understanding of microdamage is derived from studies of cortical bone, the majority of fragility fractures occur in regions of the skeleton dominated by cancellous bone. The development of tissue microdamage in cancellous bone may differ from that in cortical bone due to differences in microstructure and tissue ultrastructure. To gain insight into how microdamage accumulates in cancellous bone we determined the changes in number, size and location of microdamage sites following different amounts of cyclic compressive loading. Human vertebral cancellous bone specimens (n=32, 10 male donors, 6 female donors, age 76 ± 8.8, mean ± SD) were subjected to sub-failure cyclic compressive loading and microdamage was evaluated in three-dimensions. Only a few large microdamage sites (the largest 10%) accounted for 70% of all microdamage caused by cyclic loading. The number of large microdamage sites was a better predictor of reductions in Young’s modulus caused by cyclic loading than overall damage volume fraction (DV/BV). The majority of microdamage volume (69.12 ± 7.04%) was located more than 30 μm (the average erosion depth) from trabecular surfaces, suggesting that microdamage occurs primarily within interstitial regions of cancellous bone. Additionally, microdamage was less likely to be near resorption cavities than other bone surfaces (p<0.05), challenging the idea that stress risers caused by resorption cavities influence fatigue failure of cancellous bone. Together, these findings suggest that reductions in apparent level mechanical performance during fatigue loading are the result of only a few large microdamage sites and that microdamage accumulation in fatigue is likely dominated by heterogeneity in tissue material properties rather than stress concentrations caused by micro-scale geometry.
机译:人们日益认识到,骨骼韧性受损是造成脆性骨折的原因。在组织水平上,韧性与骨组织抵抗微观裂纹或其他组织损伤发展的能力有关。虽然我们对微损伤的大多数理解来自皮质骨的研究,但大多数脆性骨折发生在以松质骨为主的骨骼区域。由于微结构和组织超微结构的差异,松质骨中组织微损伤的发展可能与皮质骨中的不同。为了深入了解微损伤如何在松质骨中积累,我们确定了不同数量的循环压缩载荷后微损伤部位的数量,大小和位置的变化。对人椎体松质骨标本(n = 32,10位男性供体,6位女性供体,年龄76±8.8,均值±SD)进行亚失效循环压缩载荷,并在三个维度上评估微损伤。只有很少的大型微损伤位点(最大的10%)占到了周期性载荷造成的所有微损伤的70%。与整体损伤体积分数(DV / BV)相比,大的微损伤部位的数量可以更好地预测循环载荷引起的杨氏模量的降低。微损伤的大部分(69.12±7.04%)位于距小梁表面30μm(平均侵蚀深度)以上,这表明微损伤主要发生在松质骨的间隙区域内。此外,与其他骨表面相比,微损伤更不可能位于吸收腔附近(p <0.05),这挑战了由吸收腔引起的应力上升会影响松质骨疲劳破坏的想法。总之,这些发现表明,疲劳载荷过程中表观机械性能的降低仅是少数几个较大的微损伤部位的结果,疲劳中的微损伤积累很可能是由组织材料特性的异质性而不是由微观几何结构引起的应力集中所支配。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号