首页> 美国卫生研究院文献>other >Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain
【2h】

Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain

机译:未成熟脑局灶性外伤性脑损伤后线粒体生物能改变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traumatic brain injury (TBI) is one of the leading causes of death in children worldwide. Emerging evidence suggests that alterations in mitochondrial function are critical components of secondary injury cascade initiated by TBI that propogates neurodegeneration and limits neuroregeneration. Unfortunately, there is very little known about the cerebral mitochondrial bioenergetic response from the immature brain triggered by traumatic biomechanical forces. Therefore, the objective of this study was to perform a detailed evaluation of mitochondrial bioenergetics using high-resolution respirometry in a high-fidelity large animal model of focal controlled cortical impact injury (CCI) 24 h post-injury. This novel approach is directed at analyzing dysfunction in electron transport, ADP phosphorylation and leak respiration to provide insight into potential mechanisms and possible interventions for mitochondrial dysfunction in the immature brain in focal TBI by delineating targets within the electron transport system (ETS). Development and application of these methodologies have several advantages, and adds to the interpretation of previously reported techniques, by having the added benefit that any toxins or neurometabolites present in the ex-vivo samples are not removed during the mitochondrial is olation process, and simulates the in situ tricarboxylic acid (TCA) cycle by maximizing key substrates for convergent flow of electrons through both complexes I and II. To investigate alterations in mitochondrial function after CCI, ipsilateral tissue near the focal impact site and tissue from the corresponding contralateral side were examined. Respiration per mg of tissue was also related to citrate synthase activity (CS) and calculated flux control ratios (FCR), as an attempt to control for variability in mitochondrial content. Our biochemical analysis of complex interdependent pathways of electron flow through the electron transport system, by most measures, reveals a bilateral decrease in complex I-driven respiration and an increase in complex II-driven respiration 24 h after focal TBI. These alterations in convergent electron flow though both complex I and II-driven respiration resulted in significantly lower maximal coupled and uncoupled respiration in the ipsilateral tissue compared to the contralateral side, for all measures. Surprisingly, increases in complex II and complex IV activities were most pronounced in the contralateral side of the brain from the focal injury, and where oxidative phosphorylation was increased significantly compared to sham values. We conclude that 24 h after focal TBI in the immature brain, there are significant alterations in cerebral mitochondrial bioenergetics, with pronounced increases in complex II and complex IV respiration in the contralateral hemisphere. These alterations in mitochondrial bioenergetics present multiple targets for therapeutic intervention to limit secondary brain injury and support recovery.
机译:颅脑外伤(TBI)是世界范围内儿童死亡的主要原因之一。新兴证据表明,线粒体功能的改变是由TBI引发的继发性损伤级联反应的关键组成部分,它继发于神经变性并限制了神经再生。不幸的是,关于由外伤生物力学力触发的未​​成熟大脑的线粒体生物能反应的了解甚少。因此,本研究的目的是在损伤后24小时内对局灶性皮质撞击伤(CCI)的高保真大型动物模型中使用高分辨率呼​​吸测定法对线粒体生物能进行详细评估。这种新颖的方法旨在分析电子传输功能障碍,ADP磷酸化和泄漏呼吸,以通过描绘电子传输系统(ETS)内的靶标,深入了解局灶性TBI中未成熟脑线粒体功能障碍的潜在机制和可能的干预措施。这些方法的开发和应用具有多个优点,并通过具有额外的好处,即在线粒体羟化过程中不会去除活体样品中存在的任何毒素或神经代谢物,从而增加了对先前报道的技术的解释,并模拟了通过最大化电子通过会聚体I和II的会聚流动的关键底物,实现原位三羧酸(TCA)循环。为了研究CCI后线粒体功能的变化,检查了病灶附近的同侧组织和相应对侧的组织。每毫克组织的呼吸作用还与柠檬酸合酶活性(CS)和计算出的通量控制比(FCR)有关,以控制线粒体含量的变化。我们对通过电子传输系统流过的电子的复杂相互依存途径的生化分析通过大多数方法显示,局灶性TBI后24小时,复杂I驱动的呼吸双边减少,复杂II驱动的呼吸增加。对于所有措施,通过复杂的I和II驱动的呼吸,会聚电子流的这些变化导致同侧组织的最大耦合和非耦合呼吸显着低于对侧。出人意料的是,局灶性损伤在大脑对侧的复合物II和复合物IV活性增加最为明显,与假手术值相比,氧化磷酸化显着增加。我们得出的结论是,未成熟大脑中局灶性TBI后24小时,大脑线粒体生物能学发生了显着变化,对侧半球的复杂II和复杂IV呼吸明显增加。线粒体生物能学的这些变化为治疗干预提供了多个目标,以限制继发性脑损伤并支持康复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号