首页> 美国卫生研究院文献>other >Spatially Weighted Principal Component Regression for High-dimensional Prediction
【2h】

Spatially Weighted Principal Component Regression for High-dimensional Prediction

机译:高维预测的空间加权主成分回归

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

We consider the problem of using high dimensional data residing on graphs to predict a low-dimensional outcome variable, such as disease status. Examples of data include time series and genetic data measured on linear graphs and imaging data measured on triangulated graphs (or lattices), among many others. Many of these data have two key features including spatial smoothness and intrinsically low dimensional structure. We propose a simple solution based on a general statistical framework, called spatially weighted principal component regression (SWPCR). In SWPCR, we introduce two sets of weights including importance score weights for the selection of individual features at each node and spatial weights for the incorporation of the neighboring pattern on the graph. We integrate the importance score weights with the spatial weights in order to recover the low dimensional structure of high dimensional data. We demonstrate the utility of our methods through extensive simulations and a real data analysis based on Alzheimer’s disease neuroimaging initiative data.
机译:我们考虑使用驻留在图形上的高维数据来预测低维结果变量(例如疾病状态)的问题。数据的示例包括在线性图上测得的时间序列和遗传数据,以及在三角图(或晶格)上测得的成像数据等。这些数据中有许多具有两个关键特征,包括空间平滑度和固有的低维结构。我们提出了一个基于一般统计框架的简单解决方案,称为空间加权主成分回归(SWPCR)。在SWPCR中,我们引入了两组权重,包括用于在每个节点上选择单个特征的重要性得分权重和用于在图形上合并相邻模式的空间权重。我们将重要性得分权重与空间权重相集成,以恢复高维数据的低维结构。我们通过广泛的模拟和基于阿尔茨海默氏病神经成像主动数据的真实数据分析,证明了我们方法的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号