首页> 美国卫生研究院文献>other >Characterizing the DNA Damage Response by Cell Tracking Algorithms and Cell Features Classification Using High-Content Time-Lapse Analysis
【2h】

Characterizing the DNA Damage Response by Cell Tracking Algorithms and Cell Features Classification Using High-Content Time-Lapse Analysis

机译:通过细胞追踪算法和细胞特征分类使用高内涵时差分析表征DNA损伤反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traditionally, the kinetics of DNA repair have been estimated using immunocytochemistry by labeling proteins involved in the DNA damage response (DDR) with fluorescent markers in a fixed cell assay. However, detailed knowledge of DDR dynamics across multiple cell generations cannot be obtained using a limited number of fixed cell time-points. Here we report on the dynamics of 53BP1 radiation induced foci (RIF) across multiple cell generations using live cell imaging of non-malignant human mammary epithelial cells (MCF10A) expressing histone H2B-GFP and the DNA repair protein 53BP1-mCherry. Using automatic extraction of RIF imaging features and linear programming techniques, we were able to characterize detailed RIF kinetics for 24 hours before and 24 hours after exposure to low and high doses of ionizing radiation. High-content-analysis at the single cell level over hundreds of cells allows us to quantify precisely the dose dependence of 53BP1 protein production, RIF nuclear localization and RIF movement after exposure to X-ray. Using elastic registration techniques based on the nuclear pattern of individual cells, we could describe the motion of individual RIF precisely within the nucleus. We show that DNA repair occurs in a limited number of large domains, within which multiple small RIFs form, merge and/or resolve with random motion following normal diffusion law. Large foci formation is shown to be mainly happening through the merging of smaller RIF rather than through growth of an individual focus. We estimate repair domain sizes of 7.5 to 11 µm2 with a maximum number of ~15 domains per MCF10A cell. This work also highlights DDR which are specific to doses larger than 1 Gy such as rapid 53BP1 protein increase in the nucleus and foci diffusion rates that are significantly faster than for spontaneous foci movement. We hypothesize that RIF merging reflects a "stressed" DNA repair process that has been taken outside physiological conditions when too many DSB occur at once. High doses of ionizing radiation lead to RIF merging into repair domains which in turn increases DSB proximity and misrepair. Such finding may therefore be critical to explain the supralinear dose dependence for chromosomal rearrangement and cell death measured after exposure to ionizing radiation.
机译:传统上,DNA修复的动力学是使用免疫细胞化学通过在固定细胞分析中用荧光标记物标记参与DNA损伤反应(DDR)的蛋白质来估算的。但是,使用有限数量的固定单元时间点无法获得跨多个单元代的DDR动态的详细知识。在这里,我们报告使用表达组蛋白H2B-GFP和DNA修复蛋白53BP1-mCherry的非恶性人乳腺上皮细胞(MCF10A)的活细胞成像,跨多个细胞世代的53BP1辐射诱导灶(RIF)的动力学。使用RIF成像特征的自动提取和线性编程技术,我们能够表征暴露于低剂量和高剂量电离辐射之前24小时和之后24小时的详细RIF动力学。在数百个细胞中的单个细胞水平上进行的高含量分析,使我们可以精确地量化暴露于X射线后53BP1蛋白产生,RIF核定位和RIF运动的剂量依赖性。使用基于单个细胞核模式的弹性配准技术,我们可以精确地描述单个RIF在细胞核内的运动。我们显示DNA修复发生在有限数量的大域中,其中多个小RIF形成,合并和/或通过遵循正常扩散定律的随机运动分解。研究表明,较大的病灶形成主要是通过合并较小的RIF而发生的,而不是通过单个焦点的增长而发生的。我们估计修复域的大小为7.5至11 µm 2 ,每个MCF10A细胞的最大修复域数约为15个。这项工作还强调了DDR,它对大于1 Gy的剂量具有特异性,例如细胞核中53BP1蛋白的快速增加和病灶扩散速率明显快于自发病灶运动。我们假设RIF合并反映了一次过多的DSB发生时在生理条件之外采取的“压力化” DNA修复过程。高剂量的电离辐射会导致RIF合并到修复域中,这反过来又增加了DSB的接近度和失修。因此,这种发现对于解释暴露于电离辐射后测得的染色体重排和细胞死亡的超线性剂量依赖性可能至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号