首页> 美国卫生研究院文献>Frontiers in Plant Science >Plastid genomics in horticultural species: importance and applications for plant population genetics evolution and biotechnology
【2h】

Plastid genomics in horticultural species: importance and applications for plant population genetics evolution and biotechnology

机译:园艺物种中的质体基因组学:对植物种群遗传学进化和生物技术的重要性和应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100–220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field.
机译:在真核细胞进化过程中,内共生过程产生了质体和线粒体,这确定了初始植物细胞中存在三个遗传区室。此后,来自宿主和共生体的这三种遗传物质经历了几次重排,导致了核基因和细胞器基因产物之间的复杂相互作用。如今,在高等植物中,质体中有一个小的基因组,具有约130个基因,序列为100-220 kb。质体基因在植物物种之间大多是高度保守的,可用于较高分类群的系统发育分析。然而,基因间隔子具有相对较高的突变率,并且是系统地理学和植物种群遗传学分析的重要标志。质体的主要单亲遗传像是系统发育研究中非常需要的特征。此外,基因含量和基因组重排是捕获和了解不同植物物种之间进化事件的有效工具。目前,质体基因组(质体组)的遗传工程提供了许多诱人的优势,因为在大多数农作物中,质体基因组是母系遗传的,因此可以实现高水平的外源蛋白表达,标记基因切除,操纵子中的基因表达和转基因抑制。因此,质体基因组可用于添加与代谢化合物的合成,生物制药以及对生物和非生物胁迫的耐受性有关的新特征。在这里,我们描述了质体基因组作为遗传和进化研究工具以及质体转化的重要性和应用,质体转化着重于提高该领域园艺物种的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号