首页> 美国卫生研究院文献>other >A Modular Plasmin-Sensitive Clickable Poly(ethylene glycol)-Heparin-Laminin Microsphere System for Establishing Growth Factor Gradients in Nerve Guidance Conduits
【2h】

A Modular Plasmin-Sensitive Clickable Poly(ethylene glycol)-Heparin-Laminin Microsphere System for Establishing Growth Factor Gradients in Nerve Guidance Conduits

机译:模块化纤溶酶敏感可单击的聚(乙二醇)-肝素-层粘连蛋白微球系统用于在神经引导导管中建立生长因子梯度。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Peripheral nerve regeneration is a complex problem that, despite many advancements and innovations, still has sub-optimal outcomes. Compared to biologically derived acelluar nerve grafts and autografts, completely synthetic nerve guidance conduits (NGC), which allow for precise engineering of their properties, are promising but still far from optimal. We have developed an almost entirely synthetic NGC that allows control of soluble growth factor delivery kinetics, cell-initiated degradability and cell attachment. We have focused on the spatial patterning of glial-cell derived human neurotrophic factor (GDNF), which promotes motor axon extension. The base scaffolds consisted of heparin-containing poly(ethylene glycol) (PEG) microspheres. The modular microsphere format greatly simplifies the formation of concentration gradients of reversibly bound GDNF. To facilitate axon extension, we engineered the microspheres with tunable plasmin degradability. ‘Click’ cross-linking chemistries were also added to allow scaffold formation without risk of covalently coupling the growth factor to the scaffold. Cell adhesion was promoted by covalently bound laminin. GDNF that was released from these microspheres was confirmed to retain its activity. Graded scaffolds were formed inside silicone conduits using 3D-printed holders. The fully formed NGC’s contained plasmin-degradable PEG/heparin scaffolds that developed linear gradients in reversibly bound GDNF. The NGC’s were implanted into rats with severed sciatic nerves to confirm in vivo degradability and lack of a major foreign body response. The NGC’s also promoted robust axonal regeneration into the conduit.
机译:周围神经再生是一个复杂的问题,尽管取得了许多进步和创新,但结果仍然不理想。与生物衍生的蜂窝状神经移植物和自体移植物相比,完全合成的神经引导导管(NGC)允许对其属性进行精确的工程设计,这是有希望的,但仍远未达到最佳。我们已经开发出一种几乎完全合成的NGC,可以控制可溶性生长因子的输送动力学,细胞引发的降解性和细胞附着。我们已经集中在胶质细胞衍生的人类神经营养因子(GDNF)的空间格局,这促进运动轴突扩展。基础支架由含肝素的聚(乙二醇)(PEG)微球组成。模块化微球形式极大地简化了可逆结合的GDNF浓度梯度的形成。为了促进轴突延伸,我们设计了具有可调纤溶酶降解能力的微球。还添加了“点击”交联化学物质,以使支架形成,而没有将生长因子共价偶联至支架的风险。共价结合层粘连蛋白促进细胞粘附。从这些微球中释放出的GDNF被确认保留了其活性。使用3D打印的支架在硅树脂导管内部形成分级支架。完全形成的NGC包含可纤溶酶降解的PEG /肝素支架,该支架在可逆结合的GDNF中产生线性梯度。将NGC植入具有严重坐骨神经的大鼠中,以确认其体内可降解性和缺乏主要异物反应。 NGC还促进了导管中强大的轴突再生。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号