首页> 美国卫生研究院文献>other >Tailoring plasmonic properties of gold nanohole arrays for surface-enhancedRaman scattering
【2h】

Tailoring plasmonic properties of gold nanohole arrays for surface-enhancedRaman scattering

机译:金纳米孔阵列的表面增强的等离激元特性拉曼散射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The wide plasmonic tuning range of nanotriangle and nanohole array patterns fabricated by nanosphere lithography makes them promising in surface-enhanced Raman scattering (SERS) sensors. Unfortunately, it is challenging to optimize these patterns for SERS sensing because their optical response is a complex mixture of localized and propagating surface plasmons. In this paper, transmission and reflection measurements are combined with finite difference time domain simulations to identify and separate each plasmonic mode, discerning which resonance leads to the electromagnetic field enhancement. The SERS enhancement is found to be dominated by the absorption, which is shifted from the transmission and reflection dips usually used as tuning points, and by the ‘gap’ defects formed within the pattern. These effects have different spectral and geometric dependences, forming two optimization curves which can be used to predict the best performance for a given excitation wavelength. The developed model is verified with experimental SERS measurements for several nanohole sizes and periodicities, and then used to give optimal fabrication parameters for a range of measurement conditions. The results will promote the application of two-dimensional plasmonic nanoarrays in SERS sensors.
机译:通过纳米球面光刻技术制造的纳米三角形和纳米孔阵列图案的宽等离子调谐范围使它们在表面增强拉曼散射(SERS)传感器中很有前途。不幸的是,优化这些模式用于SERS传感是一项挑战,因为它们的光学响应是局部和传播的表面等离子体激元的复杂混合。在本文中,传输和反射测量与时域有限差分模拟相结合,以识别和分离每个等离激元模式,从而识别出哪个共振导致电磁场增强。发现SERS增强主要是由吸收(从通常用作调谐点的透射和反射凹陷)和图案中形成的“间隙”缺陷转移而来的。这些效应具有不同的光谱和几何相关性,形成两条优化曲线,可用于预测给定激发波长的最佳性能。所开发的模型通过实验SERS测量对几种纳米孔的大小和周期性进行了验证,然后用于为一系列测量条件提供最佳的制造参数。结果将促进二维等离激元纳米阵列在SERS传感器中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号