首页> 外文学位 >Plasmonic Properties of Gold Nanorod-based Oligomers and Arrays.
【24h】

Plasmonic Properties of Gold Nanorod-based Oligomers and Arrays.

机译:金纳米棒基低聚物和阵列的等离子体性能。

获取原文
获取原文并翻译 | 示例

摘要

Gold nanorods are preferred candidates for future plasmonic applications due to their synthetically adjustable plasmon energies and polarization-sensitive optical responses. By assembling Au nanorods into oligomers and arrays, we can greatly tune their plasmonic features, obtain more robust and reliable plasmonic structures, and therefore greatly extend their applications. In this thesis, I report on my studies on the plasmon coupling in Au nanorod oligomers, the use of graphene to mediate the plasmon coupling between Au nanocrystals, the comparison of plasmonic properties between lithographically-written and chemically-grown Au nanorods, and the fabrication of macro-scale colloidal Au nanorod arrays and their applications as refractive index sensors.;First, the plasmonic properties of Au nanorods can be tailored in a wide range by coupling them with other Au nanocrystals. The unique spectral characteristics, together with the ability to concentrate light, of coupled Au nanorod structures endow them with great potentials in applications ranging from biosensing and optics to metamaterials. To fully realize these potentials requires a thorough understanding of the plasmon coupling behavior. In this regard, our group has investigated the coupling in Au nanocube oligomers and Au nanorod homodimers. In this thesis, I have further performed systematic studies on the plasmon coupling in heterodimers composed of two different Au nanorods or one Au nanorod and one Au nanosphere.;Extensive simulations were performed to unravel the plasmon coupling in heterodimers of nanorods aligned along their length axes. The effects of the gap distance, plasmon energy, and nanorod end shape on the plasmon coupling were ascertained. I found that the plasmon coupling between two arbitrarily varying Au nanorods can be well described using a coupled mechanical oscillator model. The coupled plasmon energy can be easily, yet accurately predicted with a universal hyperbolic formula. The nanorod heterodimers also exhibit Fano interference, which ii can be adjusted by controlling the gap distance and monomer plasmon energies.;I have also investigated the coupling between a Au nanorod and a small Au nanosphere approaching it. The plasmonic responses of the heterodimer, including Fano resonance, are remarkably sensitive to the nanosphere position on the nanorod, the gap distance, and the nanocrystal dimensions. Interestingly, the nanosphere dipole is found to rotate around the nanorod dipole to achieve favorable attractive interaction for the bonding dipole-dipole mode. The sensitive spectral response of the heterodimer to the spatial perturbation of the nanosphere offers an approach to designing plasmon rulers of two spatial coordinates for sensing and high-resolution measurements of distance changes.;Furthermore, the plasmon coupling can be modulated by an ultra-thin monolayer graphene. Coupled plasmonic structures can compress light energy into an ultra-small region, permitting a strong light-graphene interaction. Effective light modulation therefore can be realized by the graphene-metal hybrid plasmonic structures. I have explored the interaction between graphene and two different coupled plasmonic structures, including Au nanorod dimers and the Au film-coupled Au nanosphere structures. For nanorod dimers, no apparent spectral modulation can be acquired through graphene. By contrast, remarkable modulation on Au nanosphere scattering can be achieved by adding graphene into the cavity between the nanosphere and the supporting film. The graphene-loaded nanosphere antennas exhibit significant resonance redshifts, which can further be modulated when graphene screening effect is varied. This graphene-decorated plasmonic nanocavity not only pushes the optical response of graphene into the visible-to-near-infrared (NIR) region but also naturally exemplifies an electro-plasmonic system. These findings thus open an avenue on effectively operating graphene photonic devices in the visible-to-NIR range and pave a way for electrically controlling light by plasmonic structures. (Abstract shortened by UMI.).
机译:金纳米棒由于其可合成调整的等离激元能量和偏振敏感的光学响应,因此是未来等离激元应用的首选候选物。通过将金纳米棒组装成低聚物和阵列,我们可以极大地调整其等离子特征,获得更鲁棒和可靠的等离子结构,从而极大地扩展其应用。在这篇论文中,我报告了我对Au纳米棒低聚物中的等离激元耦合,使用石墨烯介导Au纳米晶体之间的等离激元耦合,平版印刷和化学生长的Au纳米棒之间的等离激元性质的比较以及制备的研究。纳米胶体金纳米棒的阵列及其在折射率传感器中的应用。首先,金纳米棒的等离子体性能可通过与其他金纳米晶体耦合而在很大范围内定制。耦合的金纳米棒结构的独特光谱特征以及聚光能力使其在从生物传感,光学到超材料的广泛应用中具有巨大潜力。要完全实现这些潜力,需要对等离子体激元耦合行为有透彻的了解。在这方面,我们的小组研究了金纳米立方低聚物和金纳米棒均二聚物中的偶联。在本文中,我对由两个不同的金纳米棒或一个金纳米棒和一个金纳米球组成的异质二聚体中的等离激元耦合进行了系统的研究。进行了广泛的模拟,揭示了沿长度轴排列的纳米棒异质二聚体中的等离激元耦合。 。确定了间隙距离,等离子体激元能量和纳米棒末端形状对等离子体激元耦合的影响。我发现,使用耦合机械振荡器模型可以很好地描述两个任意变化的Au纳米棒之间的等离激元耦合。可以使用通用双曲公式轻松但准确地预测耦合的等离激元能量。纳米棒异二聚体也表现出Fano干扰,可通过控制间隙距离和单体等离激元能量来调节该干扰。我还研究了Au纳米棒和接近它的小Au纳米球之间的耦合。异源二聚体的等离子体响应,包括法诺共振,对纳米棒上的纳米球位置,间隙距离和纳米晶体尺寸非常敏感。有趣的是,发现纳米球偶极子绕纳米棒偶极子旋转以实现键合偶极子-偶极子模式的良好吸引作用。异质二聚体对纳米球空间扰动的敏感光谱响应为设计两个空间坐标的等离激元标尺提供了一种方法,用于感测和高分辨率测量距离变化。此外,可以通过超薄调制等离激元耦合。单层石墨烯。耦合的等离激元结构可以将光能压缩到一个超小的区域,从而实现强大的光-石墨烯相互作用。因此,可以通过石墨烯-金属杂化等离子体结构实现有效的光调制。我已经研究了石墨烯与两个不同的耦合等离子体结构(包括Au纳米棒二聚体和Au膜耦合的Au纳米球结构)之间的相互作用。对于纳米棒二聚体,无法通过石墨烯获得明显的光谱调制。相反,通过将石墨烯添加到纳米球和支撑膜之间的空腔中,可以实现对Au纳米球散射的显着调制。负载石墨烯的纳米球天线表现出明显的共振红移,当石墨烯屏蔽效应发生变化时,可以进一步调制该共振红移。这种石墨烯修饰的等离子体纳米腔不仅将石墨烯的光学响应推入可见到近红外(NIR)区域,而且自然地举例说明了电等离子体系统。因此,这些发现为在可见光至近红外范围内有效操作石墨烯光子器件开辟了道路,并为通过等离激元结构电控制光铺平了道路。 (摘要由UMI缩短。)。

著录项

  • 作者

    Shao, Lei.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Physics Optics.;Engineering Materials Science.;Chemistry Inorganic.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号