首页> 美国卫生研究院文献>other >Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase
【2h】

Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase

机译:真核染色质中烷基化损伤的修复取决于烷基腺苷DNA糖基化酶的搜索能力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human alkyladenine DNA glycosylase (AAG) initiates the base excision repair pathway by excising alkylated and deaminated purine lesions. In vitro biochemical experiments demonstrate that AAG uses facilitated diffusion to efficiently search DNA to find rare sites of damage, and suggest that electrostatic interactions are critical to the searching process. However, it remains an open question whether DNA searching limits the rate of DNA repair in vivo. We constructed AAG mutants with altered searching ability and measured their ability to protect yeast from alkylation damage in order to address this question. Each of the conserved arginine and lysine residues that are near the DNA binding interface were mutated and the functional impacts were evaluated using kinetic and thermodynamic analysis. These mutations do not perturb catalysis of N-glycosidic bond cleavage, but they decrease the ability to capture rare lesion sites. Nonspecific and specific DNA binding properties are closely correlated, suggesting that the electrostatic interactions observed in the specific recognition complex are similarly important for DNA searching complexes. The ability of the mutant proteins to complement repair-deficient yeast cells is positively correlated with the ability of the proteins to search DNA in vitro, suggesting that cellular resistance to DNA alkylation is governed by the ability to find and efficiently capture cytotoxic lesions. It appears that chromosomal access is not restricted and toxic sites of alkylation damage are readily accessible to a searching protein.
机译:人烷基腺嘌呤DNA糖基化酶(AAG)通过切除烷基化和脱氨基的嘌呤损伤而启动碱基切除修复途径。体外生化实验表明,AAG使用促进扩散来有效地搜索DNA以查找罕见的损伤位点,并表明静电相互作用对搜索过程至关重要。但是,DNA搜寻是否会限制体内DNA修复的速度仍然是一个悬而未决的问题。为了解决这个问题,我们构建了具有改变的搜索能力的AAG突变体,并测量了其保护酵母免受烷基化损害的能力。靠近DNA结合界面的每个保守精氨酸和赖氨酸残基均发生突变,并使用动力学和热力学分析评估功能影响。这些突变不会干扰N-糖苷键裂解的催化作用,但会降低捕获罕见病变部位的能力。非特异性和特异性DNA结合特性密切相关,这表明在特异性识别复合物中观察到的静电相互作用对DNA搜索复合物同样重要。突变蛋白补充缺陷修复酵母细胞的能力与蛋白质体外搜索DNA的能力呈正相关,这表明细胞对DNA烷基化的抗性受发现和有效捕获细胞毒性病变的能力支配。似乎染色体的进入不受限制,烷基化损伤的毒性部位很容易被搜索蛋白所接近。

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(10),11
  • 年度 -1
  • 页码 2606–2615
  • 总页数 19
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号