首页> 美国卫生研究院文献>other >Dynamics of GCN4 Facilitate DNA Interaction: A Model-Free Analysis of an Intrinsically Disordered Region
【2h】

Dynamics of GCN4 Facilitate DNA Interaction: A Model-Free Analysis of an Intrinsically Disordered Region

机译:GCN4动力学促进DNA相互作用:固有障碍区域的无模型分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) are known to play important roles in regulatory and signaling pathways. A critical aspect of these functions is the ability of IDP/IDRs to form highly specific complexes with target molecules. However, elucidation of the contributions of conformational dynamics to function has been limited by challenges associated with structural heterogeneity of IDP/IDRs. Using NMR spin relaxation parameters (15N R1, 15N R2, and {1H}-15N heteronuclear NOE) collected at four static magnetic fields ranging from 14.1 to 21.1 T, we have analyzed the backbone dynamics of the basic leucine-zipper (bZip) domain of the Saccharomyces cerevisiae transcription factor GCN4, whose DNA binding domain is intrinsically disordered in the absence of DNA substrate. We demonstrate that the extended Model-free analysis can be applied to proteins with IDRs such as apo GCN4 and that these results significantly extend previous NMR studies of GCN4 dynamics performed using a single static magnetic field of 11.74 T [Bracken, et al. (1999) J. Mol. Biol., 285, 2133–2146] and correlate well with molecular dynamics simulations [Robustelli, et al. (2013) J. Chem. Theory Comput., 9, 5190–5200]. In contrast to the earlier work, data at multiple static fields allows the time scales of internal dynamics of GCN4 to be reliably quantified. Large amplitude dynamic fluctuations in the DNA-binding region have correlation times (τs ≈ 1.4–2.5 ns) consistent with a two-step mechanism in which partially ordered bZip conformations of GCN4 form initial encounter complexes with DNA and then rapidly rearrange to the high affinity state with fully formed basic region recognition helices.
机译:已知内在无序蛋白(IDP)和具有内在无序区(IDR)的蛋白在调节和信号传导途径中起重要作用。这些功能的关键方面是IDP / IDR与目标分子形成高度特异性复合物的能力。然而,阐明构象动力学对功能的贡献受到与IDP / IDRs结构异质性相关的挑战的限制。使用NMR自旋弛豫参数( 15 N R1, 15 N R2和{ 1 H}- 15 N在从14.1至21.1 T的四个静磁场中收集到的异核NOE),我们分析了酿酒酵母转录因子GCN4的基本亮氨酸拉链(bZip)结构域的骨架动力学,该结构的DNA结合结构域在不存在时固有地无序DNA底物的数量。我们证明,扩展的无模型分析可以应用于具有IDR的蛋白质,例如载脂蛋白GCN4,并且这些结果显着扩展了先前使用11.74 T的单个静磁场进行的GCN4动力学的NMR研究[Bracken等人。 (1999)J.Mol。 [Biol。,285,2133-2146],并且与分子动力学模拟紧密相关[Robustelli等人。 (2013)J.Chem。理论计算,9,5190-5200]。与早期的工作相比,多个静态字段中的数据可以可靠地量化GCN4内部动态的时间尺度。 DNA结合区域中的大幅度动态波动具有相关时间(τs≈1.4–2.5 ns),与两步机制一致,在该机制中,GCN4的部分有序bZip构象与DNA形成初始相遇复合物,然后迅速重排至高亲和力状态完全形成的基本区域识别螺旋。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号