首页> 美国卫生研究院文献>other >Charge Carrier Dynamics and Mobility Determined by Time-Resolved Terahertz Spectroscopy on Films of Nano-to-Micrometer-Sized Colloidal Tin(II) Monosulfide
【2h】

Charge Carrier Dynamics and Mobility Determined by Time-Resolved Terahertz Spectroscopy on Films of Nano-to-Micrometer-Sized Colloidal Tin(II) Monosulfide

机译:时间分辨太赫兹光谱法测定纳米到微米级单硫化锡(II)胶膜上的电荷载流子动力学和迁移率。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tin(II) monosulfide (SnS) is a semiconductor material with an intermediate band gap, high absorption coefficient in the visible range, and earth abundant, non-toxic constituent elements. For these reasons, SnS has generated much interest for incorporation into optoelectronic devices, but little is known concerning the charge carrier dynamics, especially as measured by optical techniques. Here, as opposed to prior studies of vapor deposited films, phase-pure colloidal SnS was synthesized by solution chemistry in three size regimes, ranging from nanometer- to micron-scale (SnS small nanoparticles, SnS medium 2D nanosheets, and SnS large 2D μm-sheets), and evaluated by time-resolved terahertz spectroscopy (TRTS); an optical, non-contact probe of the photoconductivity. Dropcast films of the SnS colloids were studied by TRTS and compared to both thermally annealed films and dispersed suspensions of the same colloids. TRTS results revealed that the micron-scale SnS crystals and all of the annealed films undergo decay mechanisms during the first 200 ps following photoexcitation at 800 nm assigned to hot carrier cooling and carrier trapping. The charge carrier mobility of both the dropcast and annealed samples depends strongly on the size of the constituent colloids. The mobility of the SnS colloidal films, following the completion of the initial decays, ranged from 0.14 cm2/V·s for the smallest SnS crystals to 20.3 cm2/V·s for the largest. Annealing the colloidal films resulted in a ~ 20 % improvement in mobility for the large SnS 2D μm-sheets and a ~ 5-fold increase for the small nanoparticles and medium nanosheets.
机译:单硫化锡(II)(SnS)是一种半导体材料,具有中等的带隙,在可见光范围内具有高吸收系数,并且富含地球,无毒的构成元素。由于这些原因,SnS引起了人们对于将其结合到光电子器件中的兴趣,但是对电荷载流子动力学的了解却很少,尤其是通过光学技术进行测量时。在这里,与先前对气相沉积膜的研究相反,通过溶液化学在从纳米级到微米级的三种尺寸范围内合成了纯相胶体SnS(SnS小纳米颗粒,SnS中二维纳米片和SnS大2Dμm)。 -页),并通过时间分辨太赫兹光谱(TRTS)进行评估;光电导的光学非接触式探头。通过TRTS研究了SnS胶体的滴铸膜,并将其与热退火膜和相同胶体的分散悬浮液进行了比较。 TRTS结果表明,微米级的SnS晶体和所有退火的膜在800 nm的光激发后的最初200 ps内经历了衰减机制,这被分配给热载流子冷却和载流子捕获。压铸样品和退火样品的电荷载流子迁移率在很大程度上取决于组成胶体的大小。初始衰减完成后,SnS胶体膜的迁移率范围从最小的SnS晶体的0.14 cm 2 / V·s到20.3 cm 2 / V ·s为最大。退火胶体薄膜可使大型SnS 2Dμm片的迁移率提高约20%,而小型纳米颗粒和中等纳米片的迁移率提高约5倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号