首页> 美国卫生研究院文献>other >Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica
【2h】

Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica

机译:喷墨打印液滴的光流传感:光子晶体生物二氧化硅上蒸发诱导的自发流的极大增强

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Novel transducers for detecting an ultra-small volume of an analyte solution play pivotal roles in many applications such as chemical analysis, environmental protection and biomedical diagnosis. Recent advances in optofluidics offer tremendous opportunities for analyzing miniature amounts of samples with high detection sensitivity. In this work, we demonstrate enormous enhancement factors (106–107) of the detection limit for optofluidic analysis from inkjet-printed droplets by evaporation-induced spontaneous flow on photonic crystal biosilica when compared with conventional surface-enhanced Raman scattering (SERS) sensing using the pipette dispensing technology. Our computational fluid dynamics simulation has shown a strong recirculation flow inside the 100 picoliter droplet during the evaporation process due to the thermal Marangoni effect. The combination of the evaporation-induced spontaneous flow in micron-sized droplets and the highly hydrophilic photonic crystal biosilica is capable of providing a strong convection flow to combat the reverse diffusion force, resulting in a higher concentration of the analyte molecules at the diatom surface. In the meanwhile, high density hot-spots provided by the strongly coupled plasmonic nanoparticles with photonic crystal biosilica under a 1.5 μm laser spot are verified by finite-difference time domain simulation, which is crucial for SERS sensing. Using a drop-on-demand inkjet device to dispense multiple 100 picoliter analyte droplets with pinpoint accuracy, we achieved the single molecule detection of Rhodamine 6G and label-free sensing of 4.5 × 10−17 g trinitrotoluene from only 200 nanoliter solution.
机译:用于检测超小体积分析物溶液的新型换能器在许多应用(例如化学分析,环境保护和生物医学诊断)中起着关键作用。光学流体技术的最新进展为分析微量样品并提供高检测灵敏度提供了巨大的机会。在这项工作中,我们证明了通过蒸发诱导的光子自发流自喷墨打印液滴的光流分析的检测限的巨大增强因子(10 6 –10 7 )与使用移液器点胶技术的传统表面增强拉曼散射(SERS)感测相比,​​晶体生物二氧化硅具有更高的灵敏度。我们的计算流体动力学仿真表明,由于热Marangoni效应,在蒸发过程中100皮升液滴内部有很强的再循环流。蒸发诱导的微米大小液滴中的自发流与高度亲水的光子晶体生物二氧化硅的结合能够提供强大的对流,以抵抗反向扩散力,从而在硅藻表面产生更高浓度的分析物分子。同时,通过有限差分时域仿真验证了1.5μm激光点下强耦合等离子体纳米颗粒与光子晶体生物二氧化硅所提供的高密度热点,这对于SERS感测至关重要。使用按需喷墨设备以精确度分配多个100皮升的分析物液滴,我们实现了罗丹明6G的单分子检测和4.5×10 −17 g三硝基甲苯的无标记检测仅200纳升的溶液。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号