首页> 美国卫生研究院文献>other >A generalized multi-resolution expansion for uncertainty propagation with application to cardiovascular modeling
【2h】

A generalized multi-resolution expansion for uncertainty propagation with application to cardiovascular modeling

机译:不确定性传播的广义多分辨率扩展及其在心血管疾病模型中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational models are used in a variety of fields to improve our understanding of complex physical phenomena. Recently, the realism of model predictions has been greatly enhanced by transitioning from deterministic to stochastic frameworks, where the effects of the intrinsic variability in parameters, loads, constitutive properties, model geometry and other quantities can be more naturally included. A general stochastic system may be characterized by a large number of arbitrarily distributed and correlated random inputs, and a limited support response with sharp gradients or event discontinuities. This motivates continued research into novel adaptive algorithms for uncertainty propagation, particularly those handling high dimensional, arbitrarily distributed random inputs and non-smooth stochastic responses.In this work, we generalize a previously proposed multi-resolution approach to uncertainty propagation to develop a method that improves computational efficiency, can handle arbitrarily distributed random inputs and non-smooth stochastic responses, and naturally facilitates adaptivity, i.e., the expansion coefficients encode information on solution refinement. Our approach relies on partitioning the stochastic space into elements that are subdivided along a single dimension, or, in other words, progressive refinements exhibiting a binary tree representation. We also show how these binary refinements are particularly effective in avoiding the exponential increase in the multi-resolution basis cardinality and significantly reduce the regression complexity for moderate to high dimensional random inputs. The performance of the approach is demonstrated through previously proposed uncertainty propagation benchmarks and stochastic multi-scale finite element simulations in cardiovascular flow.
机译:计算模型被用于许多领域,以增进我们对复杂物理现象的理解。最近,通过从确定性框架过渡到随机框架,模型预测的真实性得到了极大的增强,其中可以更自然地包括参数,载荷,本构特性,模型几何形状和其他数量的固有可变性的影响。一般的随机系统的特征可能是大量任意分布和相关的随机输入,以及具有急剧梯度或事件不连续性的有限支持响应。这激发了人们对不确定性传播的新型自适应算法(特别是那些处理高维,任意分布的随机输入和非平滑随机响应的自适应算法)的持续研究的需要。提高了计算效率,可以处理任意分布的随机输入和不平滑的随机响应,并且自然地促进了适应性,即,扩展系数对解决方案优化中的信息进行编码。我们的方法依赖于将随机空间划分为沿单个维度细分的元素,或者换句话说,通过渐进式精炼展现出二叉树表示形式。我们还显示了这些二进制细化如何特别有效地避免了多分辨率基数基数的指数增长,并显着降低了中度到高维随机输入的回归复杂度。通过先前提出的不确定性传播基准和心血管流动中的随机多尺度有限元模拟,证明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号