首页> 美国卫生研究院文献>other >A New Approach to Integrate GPU-based Monte Carlo Simulation into Inverse Treatment Plan Optimization for Proton Therapy
【2h】

A New Approach to Integrate GPU-based Monte Carlo Simulation into Inverse Treatment Plan Optimization for Proton Therapy

机译:将基于GPU的蒙特卡洛模拟集成到质子治疗逆治疗计划优化中的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6±15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
机译:质子治疗的逆治疗计划非常需要基于蒙特卡洛(MC)的点剂量计算,因为它具有准确性。关于生物学优化的最新研究还表明使用MC方法来计算感兴趣的相关量,例如线性能量转移。尽管已经开发了基于GPU的MC引擎来解决逆向优化问题,但仍然需要提高其效率。另外,在MC计算中使用大量GPU不利于临床应用。先前提出的自适应粒子采样(APS)方法可以通过更有效地使用计算量大的MC仿真来提高基于MC的逆优化的效率。该方法比传统方法更有效,后者在两个连续步骤中执行点剂量计算和优化。在本文中,我们建议使用APS方案在GPU上执行基于MC的点剂量计算的计算库。在优化过程中,已实施的APS方法对笔形束斑中的粒子执行了非均匀采样,从而对高强度斑点中的粒子进行了采样。该库还执行解决优化问题时经常使用的两个计算量大的矩阵矢量运算。该库设计允许将基于MC的点剂量计算简化集成到现有的质子治疗逆向计划过程中。我们在具有四个患者案例的典型逆向优化系统中测试了开发的库。该库通过支持各种质子治疗方案中的逆计划来实现目标功能。单场均匀剂量,3D强度调制质子治疗和远端边缘追踪。效率比传统计算方案中使用基于GPU的MC软件包高41.6±15.3%。单个GPU卡上的总计算时间在2到50分钟之间,具体取决于问题的大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号