首页> 美国卫生研究院文献>other >Soot organics and ultrafine ash from air- and oxy-fired coal combustion
【2h】

Soot organics and ultrafine ash from air- and oxy-fired coal combustion

机译:空气和氧气燃烧煤的煤烟有机物和超细灰分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pulverized bituminous coal was burned in a 10W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR=1.2–1.4) and constant residence times (2.3s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxycombustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50–95%). Carbonaceous components on particles <0.6μm measured by a thermal optical method showed that large fractions (52–93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14–71% of this material may be OC volatilizing between 100 and 550°C with the remaining 29–86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.
机译:在空气燃烧和三个氧气燃烧入口氧气条件(28%,32%和36%)的情况下,将粉状烟煤在10W外部加热的气流床中燃烧。实验设计为产生具有实际相关的化学计量比(SR = 1.2-1.4)和恒定停留时间(2.3s)的火焰。收集了按尺寸分类的粉煤灰样品,测量的重点是总粉煤灰和超细粉尘(<0.6μm)的烟灰,元素碳(EC)和有机碳(OC)组成。结果表明,尽管通过燃烧损失来衡量的总粉煤灰碳始终处于可接受的低水平(<2%),并且所有三种氧气燃烧条件均低于空气燃烧,但超细粉煤灰既适用于空气燃烧,又适用于氧气燃烧燃烧条件主要由含碳物质(50–95%)组成。用热光学方法测量的<0.6μm颗粒上的碳质成分显示,很大一部分(52–93%)由OC组成,而不是EC。该观察得到热重分析的支持,表明在空气,28%的氧气和32%的氧气条件下,该材料的14-71%可能在100至550°C的温度范围内挥发,其余29-86%的EC /煤烟。但是,对于36%的氧条件,OC可能占超细碳的90%以上,而EC /烟尘的贡献要小得多。通过考虑氧燃烧对烟煤的火焰附着,点火延迟和烟灰氧化的影响以及这些过程对OC和EC排放的影响来解释这些数据。火焰空气动力学和入口氧化剂成分可能会影响烟煤排放的有机有害空气污染物(HAP)。在富氧燃烧过程中,可以明智地控制进口氧气的浓度和位置,以最大程度地减少有机HAP和烟尘的排放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号