首页> 美国卫生研究院文献>other >Advancing Discontinuous Fiber-Reinforced Composites above Critical Length for Replacing Current Dental Composites and Amalgam
【2h】

Advancing Discontinuous Fiber-Reinforced Composites above Critical Length for Replacing Current Dental Composites and Amalgam

机译:超过临界长度的不连续纤维增强复合材料的发展以取代目前的牙科复合材料和汞合金

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Clinicians have been aware that posterior dental particulate-filled composites (PFCs) have many placement disadvantages and indeed fail clinically at an average rate faster than amalgam alloys. Secondary caries is most commonly identified as the chief failure mechanism for both dental PFCs and amalgam. In terms of a solution, fiber-reinforced composites (FRCs) above critical length (Lc) can provide mechanical property safety factors with compound molding packing qualities to reduce many problems associated with dental PFCs. Discontinuous chopped fibers above the necessary Lc have been incorporated into dental PFCs to make consolidated molding compounds that can be tested for comparisons with PFC controls on mechanical properties, wear resistance, void-defect occurrence and packing ability to reestablish the interproximal contact. Further, imaging characterizations can aid in providing comparisons for FRCs with other materials using scanning electron microscopy, atomic force microscopy and photographs. Also, the amalgam filling material has finally been tested by appropriate ASTM flexural bending methods that eliminate shear failure associated with short span lengths in dental standards for comparison with dental PFCs to best explain increased longevity for the amalgam when compared to dental PFCs. Accurate mechanical tests also provide significant proof for superior advantages with FRCs. Mechanical properties tested included flexural strength, yield strength, modulus, resilience, work of fracture, critical strain energy release and critical stress intensity factor. FRC molding compounds with fibers above Lc extensively improve all mechanical properties over PFC dental paste and over the amalgam for all mechanical properties except modulus. The dental PFC also demonstrated superior mechanical properties over the amalgam except modulus to provide a better explanation for increased PFC failure due to secondary caries. With lower PFC modulus, increased adhesive bond breakage is expected from greater interlaminar shearing as the PFC accentuates straining deflections compared to amalgam at the higher modulus tooth enamel margins during loading. Preliminary testing for experimental FRCs with fibers above Lc demonstrated three-body wear even less than enamel to reduce the possibility of marginal ditching as a factor in secondary caries seen with both PFCs and amalgam. Further, FRC molding compounds with chopped fibers above Lc properly impregnated with photocure resin can pack with condensing forces higher than the amalgam to eliminate voids in the proximal box commonly seen with dental PFCs and reestablish interproximal contacts better than amalgam. Subsequent higher FRC packing forces can aid in squeezing monomer, resin, particulate and nanofibers deeper into adhesive mechanical bond retention sites and then leave a higher concentration of insoluble fibers and particulate as moisture barriers at the cavity margins. Also, FRC molding compounds can incorporate triclosan antimicrobial and maintain a strong packing condensing force that cannot be accomplished with PFCs which form a sticky gluey consistency with triclosan. In addition, large FRC packing forces allow higher concentrations of the hydrophobic ethoxylated bis phenol A dimethacrylate (BisEMA) low-viscosity oligomer resin that reduces water sorption and solubility to then still maintain excellent consistency. Therefore, photocure molding compounds with fibers above Lc appear to have many exceptional properties and design capabilities as improved alternatives for replacing both PFCs and amalgam alloys in restorative dental care.
机译:临床医生已经意识到,后牙颗粒填充复合材料(PFC)具有许多放置缺陷,并且实际上在临床上平均失败的速度比汞齐合金快。继发性龋齿是最常见的牙科PFC和汞合金的主要失效机制。在解决方案方面,超过临界长度(Lc)的纤维增强复合材料(FRC)可以提供具有复合模塑填充质量的机械性能安全系数,从而减少与牙科PFC相关的许多问题。高于所需Lc的不连续短切纤维已被掺入牙科PFC中,以制造固结的模塑料,可以对其进行测试,以便与PFC控件在机械性能,耐磨性,空洞缺陷发生和填充能力上进行比较,以重建近端接触。此外,成像特征可以使用扫描电子显微镜,原子力显微镜和照片来帮助提供FRC与其他材料的比较。而且,汞合金填充材料最终已经通过适当的ASTM弯曲弯曲方法进行了测试,该方法可以消除与牙科PFC相比在牙科标准品中与短跨距相关的剪切破坏,从而最好地解释了与牙科PFC相比汞合金的使用寿命更长。准确的机械测试也为FRC的优越性提供了重要证据。测试的机械性能包括弯曲强度,屈服强度,模量,回弹力,断裂功,临界应变能释放和临界应力强度因子。纤维含量高于Lc的FRC模塑料,与PFC牙膏和汞合金相比,除模量外的所有机械性能均大大改善了所有机械性能。除模量外,牙科用PFC还显示出优于汞合金的机械性能,从而更好地解释了由于继发龋引起的PFC失效。在较低的PFC模量下,与较高的模压牙釉质边沿中的汞齐相比,与PFC相比,汞合金会加剧应变挠曲,因此层间剪切力越大,预计粘合剂粘结断裂的作用就越大。对纤维含量高于Lc的实验性FRC进行的初步测试表明,三体磨损甚至比牙釉质少,以减少边缘沟的可能性,这是PFC和汞齐继发性龋齿中的一个因素。此外,用光固化树脂正确浸渍的Lc以上的短切纤维的FRC模塑料可以以高于汞齐的凝结力堆积,从而消除了牙科PFC常见的近端盒子中的空隙,并且比汞齐更好地重建了近端接触。随后更高的FRC填充力可以帮助将单体,树脂,颗粒和纳米纤维更深地压入粘合剂机械粘合保留位,然后在模腔边缘保留更高浓度的不溶性纤维和颗粒作为防潮层。同样,FRC模塑料可掺入三氯生抗菌剂并保持强大的堆积凝结力,而这是与三氯生形成粘性粘稠稠度的PFC无法实现的。此外,较大的FRC填充力可实现更高浓度的疏水性乙氧基化双酚A二甲基丙烯酸酯(BisEMA)低粘度低聚物树脂,从而降低了水的吸收性和溶解性,从而仍然保持出色的稠度。因此,具有高于Lc的纤维的光固化模塑化合物似乎具有许多优异的性能和设计能力,作为在修复性牙齿护理中替代PFC和汞齐合金的改良替代品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号