首页> 美国卫生研究院文献>other >Monte Carlo simulations of time-of-flight PET with double-endedreadout: calibration coincidence resolving times and statistical lowerbounds
【2h】

Monte Carlo simulations of time-of-flight PET with double-endedreadout: calibration coincidence resolving times and statistical lowerbounds

机译:双端飞行时间PET的蒙特卡罗模拟读数:校准重合时间和更低的统计数据界线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper demonstrates through Monte Carlo simulations that a practical positron emission tomograph with (1) deep scintillators for efficient detection, (2) double-ended readout for depth-of-interaction information, (3) fixed-level analog triggering, and (4) accurate calibration and timing data corrections can achieve a coincidence resolving time (CRT) that is not far above the statistical lower bound.One Monte Carlo algorithm simulates a calibration procedure that uses data from a positron point source. Annihilation events with an interaction near the entrance surface of one scintillator are selected, and data from the two photodetectors on the other scintillator provide depth-dependent timing corrections. Another Monte Carlo algorithm simulates normal operation using these corrections and determines the CRT. A third Monte Carlo algorithm determines the CRT statistical lower bound by generating a series of random interaction depths, and for each interaction a set of random photoelectron times for each of the two photodetectors. The most likely interaction times are determined by shifting the depth-dependent probability density function to maximize the joint likelihood for all the photoelectron times in each set.Example calculations are tabulated for different numbers of photoelectrons and photodetector time jitters for three 3 × 3 ×30 mm3 scintillators: Lu2SiO5:Ce,Ca (LSO),LaBr3:Ce, and a hypothetical ultra-fast scintillator. To isolatethe factors that depend on the scintillator length and the ability to estimatethe DOI, CRT values are tabulated for perfect scintillator-photodetectors. ForLSO with 4000 photoelectrons and single photoelectron time jitter of thephotodetector J = 0.2 ns (FWHM), the CRT value usingthe statistically weighted average of corrected trigger times is 0.098 ns FWHMand the statistical lower bound is 0.091 ns FWHM. For LaBr3:Ce with8000 photoelectrons and J = 0.2 ns FWHM, the CRT valuesare 0.070 and 0.063 ns FWHM, respectively. For the ultra-fast scintillator with1 ns decay time, 4000 photoelectrons, and J = 0.2 nsFWHM, the CRT values are 0.021 and 0.017 ns FWHM, respectively. The examplesalso show that calibration and correction for depth-dependent variations inpulse height and in annihilation and optical photon transit times are necessaryto achieve these CRT values.
机译:本文通过蒙特卡洛模拟演示了一种实际的正电子发射断层扫描仪,其中包括(1)用于有效检测的深闪烁体,(2)交互深度信息的双端读数,(3)固定电平模拟触发和(4)准确的校准和时序数据校正可以实现不超过统计下限的巧合解决时间(CRT)。一种Monte Carlo算法模拟使用来自正电子点源的数据的校准过程。选择一个闪烁器入口表面附近具有相互作用的hil灭事件,并且来自另一个闪烁器上两个光电探测器的数据将提供深度相关的时序校正。另一种蒙特卡洛算法使用这些校正来模拟正常运行并确定CRT。第三种蒙特卡洛算法通过生成一系列随机相互作用深度来确定CRT统计下界,对于每个相互作用,两个光电探测器中的每一个都具有一组随机光电子时间。通过移动与深度相关的概率密度函数以使每个集合中所有光电子时间的联合似然性最大化,可以确定最可能的相互作用时间。将三个3×3×的不同光电子数和光探测器时间抖动的示例计算表化为表格30 mm 3 闪烁体:Lu2SiO5:Ce,Ca(LSO),LaBr3:Ce和假想的超快闪烁体。隔离取决于闪烁体长度和估计能力的因素将DOI,CRT值制成表格,以实现完美的闪烁体光电探测器。对于具有4000个光电子和单光电子时间抖动的LSO光电探测器J = 0.2 ns(FWHM),CRT值使用校正后触发时间的统计加权平均值为0.098 ns FWHM统计下限为0.091 ns FWHM。对于LaBr3:Ce与8000个光电子和J = 0.2 ns FWHM,CRT值FWHM分别为0.070和0.063 ns。对于具有以下特性的超快闪烁体1 ns的衰减时间,4000个光电子和J = 0.2 nsFWHM,CRT值分别为0.021和0.017 ns FWHM。例子还显示了针对深度相关变化的校准和校正脉冲高度,in灭和光子的传输时间是必需的实现这些CRT值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号