首页> 美国卫生研究院文献>other >Phase separation drives heterochromatin domain formation
【2h】

Phase separation drives heterochromatin domain formation

机译:相分离驱动异染色质域形成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Constitutive heterochromatin is an important component of eukaryotic genomes that has essential roles in nuclear architecture, DNA repair and genome stability, and silencing of transposon and gene expression. Heterochromatin is highly enriched for repetitive sequences, and is defined epigenetically by methylation of histone H3 at lysine 9 and recruitment of its binding partner heterochromatin protein 1 (HP1). A prevalent view of heterochromatic silencing is that these and associated factors lead to chromatin compaction, resulting in steric exclusion of regulatory proteins such as RNA polymerase from the underlying DNA. However, compaction alone does not account for the formation of distinct, multi-chromosomal, membrane-less heterochromatin domains within the nucleus, fast diffusion of proteins inside the domain, and other dynamic features of heterochromatin. Here we present data that support an alternative hypothesis: that the formation of heterochromatin domains is mediated by phase separation, a phenomenon that gives rise to diverse non-membrane-bound nuclear, cytoplasmic and extracellular compartments. We show that Drosophila HP1a protein undergoes liquid–liquid demixing in vitro, and nucleates into foci that display liquid properties during the first stages of heterochromatin domain formation in early Drosophila embryos. Furthermore, in both Drosophila and mammalian cells, heterochromatin domains exhibit dynamics that are characteristic of liquid phase-separation, including sensitivity to the disruption of weak hydrophobic interactions, and reduced diffusion, increased coordinated movement and inert probe exclusion at the domain boundary. We conclude that heterochromatic domains form via phase separation, and mature into a structure that includes liquid and stable compartments. We propose that emergent biophysical properties associated with phase-separated systems are critical to understanding the unusual behaviours of heterochromatin, and how chromatin domains in general regulate essential nuclear functions.
机译:组成型异染色质是真核生物基因组的重要组成部分,在核结构,DNA修复和基因组稳定性,转座子沉默和基因表达沉默中具有重要作用。异染色质高度富集重复序列,并通过在赖氨酸9处的组蛋白H3甲基化并募集其结合伴侣异染色质蛋白1(HP1)在表观遗传上定义。异色沉默的一个普遍观点是,这些因素和相关因素导致染色质紧缩,从而导致潜在的调节蛋白(如RNA聚合酶)从基础DNA 中被空间排除。但是,仅靠压实不能解释核内独特,多染色体,无膜的异染色质结构域的形成,结构域内蛋白质的快速扩散以及异染色质的其他动态特征。在这里,我们提供了支持另一种假设的数据:异染色质域的形成是由相分离介导的,这种现象引起了多种非膜结合的核,胞质和细胞外区室 。我们显示果蝇HP1a蛋白在体外经历液-液混合,并成核成焦点,在果蝇早期胚胎异染色质域形成的第一阶段显示液体特性。此外,在果蝇和哺乳动物细胞中,异染色质域都表现出液相分离所特有的动力学特性,包括对弱疏水相互作用破坏的敏感性,以及扩散减少,协调运动增加和域边界处的惰性探针排斥。我们得出的结论是,异色域通过相分离形成,并成熟为包括液体和稳定隔室的结构。我们提出与相分离系统相关的新兴生物物理特性对于理解异染色质的异常行为以及染色质结构域通常如何调节基本核功能至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号