首页> 美国卫生研究院文献>other >Two-Phase Displacements In Microchannels of Triangular Cross-Section
【2h】

Two-Phase Displacements In Microchannels of Triangular Cross-Section

机译:三角形截面微通道中的两相位移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Varying microfluidic channel cross-sectional geometry can dramatically alter fluid flow behavior, particularly for capillary-driven flow. Most fabrication techniques, however, are planar and therefore incapable of providing depth-dependent variations in width. We introduce an ultrafast laser ablation technique that enables the fabrication of microchannels with arbitrary triangular cross sectional geometry. Triangular channels were fabricated with widths ranging from 45 to 116 µm and aspect ratios between 0.7 to 1.9. This experimental platform was utilized to observe two-phase flow and evaluate the capillary pressures required to initiate flow within triangular capillaries. Applying Mayer, Stowe and Princen (MS-P) theory, critical drainage capillary pressures were predicted for varying cross sections and compared to experimental observations. Results indicate the capability to predict capillary pressures inside triangular channels with perfectly water wet surfaces, providing the first instance of experimental validation of the theory for arbitrary triangular cross sections. This work was extended to intermediate wet conditions, which provides an insight into the prediction of capillary pressure under more realistic conditions. The fabrication techniques and validation of predictive frameworks presented here provide an approach to microfluidic experimental design that will impact a wide range of fundamental and applied technology areas.
机译:改变微流体通道的横截面几何形状可以显着改变流体的流动特性,特别是对于毛细管驱动的流体。然而,大多数制造技术是平面的,因此不能提供宽度随深度的变化。我们介绍了一种超快激光烧蚀技术,该技术能够制造具有任意三角形横截面几何形状的微通道。三角形通道的宽度在45到116 µm之间,纵横比在0.7到1.9之间。该实验平台用于观察两相流动并评估在三角毛细管中引发流动所需的毛细管压力。应用Mayer,Stowe和Princen(MS-P)理论,预测了不同横截面的临界排水毛细管压力,并将其与实验观察结果进行了比较。结果表明能够预测具有完美水润湿表面的三角形通道内部的毛细压力,这为任意三角形横截面的理论提供了实验验证的第一例。这项工作已扩展到中等湿度条件,这为更实际条件下毛细管压力的预测提供了见识。本文介绍的制造技术和预测框架的验证为微流体实验设计提供了一种方法,该方法将影响广泛的基础和应用技术领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号