首页> 美国卫生研究院文献>other >Transport of ellipsoid fibers in oscillatory shear flows:Implications for aerosol deposition in deep airways
【2h】

Transport of ellipsoid fibers in oscillatory shear flows:Implications for aerosol deposition in deep airways

机译:椭圆形纤维在振荡剪切流中的传输:对深层气道中气溶胶沉积的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is widely acknowledged that inhaled fibers, e.g. air pollutants and anthropogenic particulate matter, hold the ability to deposit deep into the lungs reaching the distal pulmonary acinar airways as a result of their aerodynamic properties; these particles tend to align with the flow and thus stay longer airborne relative to their spherical counterpart, due to higher drag forces that resist sedimentation. Together with a high surface-to-volume ratio, such characteristics may render non-spherical particles, and fibers in particular, potentially attractive airborne carriers for drug delivery. Until present, however, our understanding of the dynamics of inhaled aerosols in the distal regions of the lungs has been mostly limited to spherical particles. In an effort to unravel the fate of non-spherical aerosols in the pulmonary depths, we explore through numerical simulations the kinematics of ellipsoid-shaped fibers in a toy model of a straight pipe as a first step towards understanding particle dynamics in more intricate acinar geometries. Transient translational and rotational motions of micronsized ellipsoid particles are simulated as a function of aspect ratio (AR) for laminar oscillatory shear flows mimicking various inhalation maneuvers under the influence of aerodynamic (i.e. drag andlift) and gravitational forces. We quantify transport and deposition metrics forsuch fibers, including residence time and penetration depth, compared withspherical particles of equivalent mass. Our findings underscore how depositiondepth is largely independent of AR under oscillatory conditions, in contrastwith previous works where AR was found to influence deposition depth understeady inspiratory flow. Overall, our efforts underline the importance ofmodeling oscillatory breathing when predicting fiber deposition in the distallungs, as they are inhaled and exhaled during a full inspiratory cycle. Suchphysical insight helps further explore the potential of fiber particles asattractive carriers for deep airway targeting.
机译:众所周知,吸入纤维,例如空气污染物和人为颗粒物由于其空气动力学特性而具有将其深层沉积到到达远端肺腺泡气道的肺中的能力;由于较高的阻力可抵抗沉淀,这些颗粒倾向于与流动对齐,因此相对于其球形对应物在空气中停留的时间更长。连同高的表面积/体积比,这样的特性可能导致非球形的颗粒,尤其是纤维,成为潜在的吸引空气的药物载体。然而,直到现在,我们对在肺的远端区域中吸入气雾剂的动力学的了解大多局限于球形颗粒。为了揭示肺深处非球形气溶胶的命运,我们通过数值模拟探索了直管玩具模型中椭球形纤维的运动学,这是了解更复杂的腺泡几何形状中粒子动力学的第一步。 。对于层流振荡剪切流,模拟了在空气动力学(即阻力和阻力升力)和引力。我们量化用于此类纤维,包括停留时间和穿透深度,与质量相等的球形颗粒。我们的发现强调沉积如何相比之下,在振荡条件下,深度很大程度上与AR无关在先前的工作中发现AR影响了稳定的吸气流量。总体而言,我们的努力强调了在预测远端纤维沉积时模拟振荡呼吸在整个吸气周期中被吸入和呼出的肺部。这样物理洞察力有助于进一步探索纤维颗粒的潜力,因为深层气道定位的有吸引力的载体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号