首页> 美国卫生研究院文献>other >Turbulence intensities in large-eddy simulation of wall-bounded flows
【2h】

Turbulence intensities in large-eddy simulation of wall-bounded flows

机译:壁面流动大涡模拟中的湍流强度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A persistent problem in wall-bounded large-eddy simulations (LES) with Dirichlet no-slip boundary conditions is that the near-wall streamwise velocity fluctuations are overpredicted, while those in the wall-normal and spanwise directions are underpredicted. The problem may become particularly pronounced when the near-wall region is underresolved. The prediction of the fluctuations is known to improve for wall-modeled LES, where the no-slip boundary condition at the wall is typically replaced by Neumann and no-transpiration conditions for the wall-parallel and wall-normal velocities, respectively. However, the turbulence intensity peaks are sensitive to the grid resolution and the prediction may degrade when the grid is refined. In the present study, a physical explanation of this phenomena is offered in terms of the behavior of the near-wall streaks. We also show that further improvements are achieved by introducing a Robin (slip) boundary condition with transpiration instead of the Neumann condition. By using a slip condition, the inner energy production peak is damped, and the blocking effect of the wall is relaxed such that the splatting of eddies at the wall is mitigated. As a consequence, the slip boundary condition provides an accurate and consistent prediction of the turbulence intensities regardless of the near-wall resolution.
机译:具有Dirichlet无滑边界条件的有边界大涡模拟(LES)的一个持久问题是,近壁流速度波动被过高预测,而壁法向和翼展方向上的速度波动被低估了。当近壁区域的分辨率不足时,该问题可能会变得特别明显。已知对于壁模型LES可以改善波动的预测,其中壁的无滑移边界条件通常分别由Neumann和无蒸腾条件代替,以平行于壁和垂直于壁的速度进行。但是,湍流强度峰值对栅格分辨率敏感,并且当栅格细化时,预测可能会降低。在本研究中,根据近壁条纹的行为对这种现象进行了物理解释。我们还表明,通过引入具有蒸腾作用的Robin(滑移)边界条件而不是Neumann条件,可以实现进一步的改进。通过使用滑动条件,内部能量产生峰值被衰减,并且壁的阻挡效果被放松,从而减轻了在壁处涡流的飞溅。结果,不管近壁分辨率如何,滑动边界条件都可以对湍流强度进行准确一致的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号