首页> 外文期刊>Bulletin of the American Physical Society >APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - Turbulent intensities in large-eddy simulation of wall-bounded flows
【24h】

APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - Turbulent intensities in large-eddy simulation of wall-bounded flows

机译:APS-APS流体动力学分部第70届年会-事件-边界流的大涡模拟中的湍流强度

获取原文
           

摘要

A persistent problem in wall bounded large-eddy simulations (LES) with Dirichlet no-slip boundary conditions is that the near-wall streamwise velocity fluctuations are over-predicted, while those in the wall-normal and spanwise directions are under-predicted. The problem is particularly pronounced when the near-wall region is under-resolved. The prediction of the fluctuations is known to improve for wall-modeled LES, where the no-slip boundary condition at the wall is typically replaced by Neumann and no-transpiration conditions for the wall-parallel and wall-normal velocities, respectively. However, the turbulent intensity peaks are sensitive to the grid resolution and the prediction may degrade when the grid is refined. In the present study, a physical explanation of this phenomena is offered in terms of the behavior of the near-wall streaks. We also show that further improvements are achieved by introducing a slip boundary condition with transpiration. By using a slip condition, the inner energy production peak is damped, and the blocking effect of the wall is relaxed such that the splatting of eddies at the wall is reduced. As a consequence, the slip condition provides an accurate and consistent prediction of the turbulent intensities regardless of the near-wall resolution.
机译:具有Dirichlet无滑边界条件的有壁有界大涡模拟(LES)中的一个持久问题是,近壁流速度波动被过高预测,而壁法向和翼展方向上的速度波动被低估了。当近壁区域的分辨率不足时,该问题尤其明显。已知对于壁模型LES可以改善波动的预测,其中壁的无滑移边界条件通常分别由Neumann和无蒸腾条件代替,以平行于壁和垂直于壁的速度进行。但是,湍流强度峰值对网格分辨率很敏感,并且当优化网格时,预测可能会降低。在本研究中,根据近壁条纹的行为对这种现象进行了物理解释。我们还表明,通过引入具有蒸腾作用的滑移边界条件可以实现进一步的改进。通过使用滑动条件,内部能量产生峰值被衰减,并且壁的阻挡作用被放松,从而减少了在壁处涡流的飞溅。结果,无论近壁分辨率如何,打滑条件都可以准确,一致地预测湍流强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号