首页> 美国卫生研究院文献>other >Global versus local mechanisms of temperature sensing in ion channels
【2h】

Global versus local mechanisms of temperature sensing in ion channels

机译:离子通道中温度感测的整体机制与局部机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNaV) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that ‘local’ domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.
机译:离子通道将各种输入(从神经递质到物理力)转换为电信号。对配体的通道响应通常依赖于与离散传感器域的结合,所述离散传感器域与通道中负责离子渗透的部分耦合。相比之下,感应物理线索(例如电压,压力和温度)则来自更多变化的机制。电压通常通过基于局部域的策略来感测,而压力感测的主要范例在通道结构中采用了对膜张力变化的全局响应。温度感测一直是最难理解的反应,对于压力和温度是否存在离散的传感器域一直是许多研究和辩论的主题。近来令人振奋的进步发现了分别用于力敏感和热敏感离子通道中压力和温度的离散传感器模块。特别是,细菌电压门控钠通道(BacNaV)热响应的表征已经确定了一种盘绕线圈热传感器,该传感器通过依赖于温度的展开事件来控制通道功能。这种盘绕线圈的热传感器设计图重复出现在其他对温度敏感的离子通道和对温度敏感的蛋白质中。这些示例与离子通道压力感测域的识别一起证明,存在基于“本地”域的感测力和温度解决方案,并突出了通道用于感测物理输入的全局和局部策略的多样性。这些新近发现的物理信号传感器的模块化性质为工程改造新型压敏和热敏蛋白提供了机会,并引发了有关此类模块化传感器可能如何进化并赋予离子通道孔新灵敏度的新问题。

著录项

  • 期刊名称 other
  • 作者单位
  • 年(卷),期 -1(470),5
  • 年度 -1
  • 页码 733–744
  • 总页数 19
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号