首页> 美国卫生研究院文献>other >Short-term action potential memory and electrical restitution: A cellular computational study on the stability of cardiac repolarization under dynamic pacing
【2h】

Short-term action potential memory and electrical restitution: A cellular computational study on the stability of cardiac repolarization under dynamic pacing

机译:短期动作电位记忆和电恢复:动态起搏下心脏复极稳定性的细胞计算研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrical restitution (ER) is a major determinant of repolarization stability and, under fast pacing rate, it reveals memory properties of the cardiac action potential (AP), whose dynamics have never been fully elucidated, nor their ionic mechanisms. Previous studies have looked at ER mainly in terms of changes in AP duration (APD) when the preceding diastolic interval (DI) changes and described dynamic conditions where this relationship shows hysteresis which, in turn, has been proposed as a marker of short-term AP memory and repolarization stability. By means of numerical simulations of a non-propagated human ventricular AP, we show here that measuring ER as APD versus the preceding cycle length (CL) provides additional information on repolarization dynamics which is not contained in the companion formulation. We focus particularly on fast pacing rate conditions with a beat-to-beat variable CL, where memory properties emerge from APD vs CL and not from APD vs DI and should thus be stored in APD and not in DI. We provide an ion-currents characterization of such conditions under periodic and random CL variability, and show that the memory stored in APD plays a stabilizing role on AP repolarization under pacing rate perturbations. The gating kinetics of L-type calcium current seems to be the main determinant of this safety mechanism. We also show that, at fast pacing rate and under otherwise identical pacing conditions, a periodically beat-to-beat changing CL is more effective than a random one in stabilizing repolarization. In summary, we propose a novel view of short-term AP memory, differentially stored between systole and diastole, which opens a number of methodological and theoretical implications for the understanding of arrhythmia development.
机译:电恢复(ER)是重新极化稳定性的主要决定因素,在快速起搏速度下,它揭示了心脏动作电位(AP)的记忆特性,其动力学尚未完全阐明,其离子机制也从未被阐明。先前的研究主要从前舒张期间隔(DI)改变时AP持续时间(APD)的变化着眼于ER,并描述了动态条件,其中该关系显示了滞后现象,因此提出将其作为短期标记AP记忆和复极化稳定性。通过非传播的人心室AP的数值模拟,我们在这里显示,测量ER为APD相对于先前的周期长度(CL),可以提供复极化动力学的其他信息,该信息未包含在配套配方中。我们特别关注具有逐拍变量CL的快速起搏速率条件,其中存储器属性来自APD vs CL,而不是来自APD vs DI,因此应存储在APD中而不是DI中。我们提供了在周期性和随机CL可变性下这种条件的离子流表征,并表明在起搏速率扰动下,存储在APD中的存储器对AP复极化起稳定作用。 L型钙电流的门控动力学似乎是该安全机制的主要决定因素。我们还表明,在快速起搏速率下以及在其他相同起搏条件下,周期性心跳变化的CL在稳定复极方面比随机心律更有效。总之,我们提出了一种新的短期AP记忆的观点,即收缩期和舒张期之间的差异存储,这为理解心律不齐的发展打开了许多方法和理论意义。

著录项

  • 期刊名称 other
  • 作者

    Massimiliano Zaniboni;

  • 作者单位
  • 年(卷),期 -1(13),3
  • 年度 -1
  • 页码 e0193416
  • 总页数 23
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号