首页> 美国卫生研究院文献>other >A Review of Dynamic Modeling Approaches and Their Application in Computational Strain Optimization for Metabolic Engineering
【2h】

A Review of Dynamic Modeling Approaches and Their Application in Computational Strain Optimization for Metabolic Engineering

机译:动态建模方法及其在代谢工程计算应变优化中的应用综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mathematical modeling is a key process to describe the behavior of biological networks. One of the most difficult challenges is to build models that allow quantitative predictions of the cells' states along time. Recently, this issue started to be tackled through novel in silico approaches, such as the reconstruction of dynamic models, the use of phenotype prediction methods, and pathway design via efficient strain optimization algorithms. The use of dynamic models, which include detailed kinetic information of the biological systems, potentially increases the scope of the applications and the accuracy of the phenotype predictions. New efforts in metabolic engineering aim at bridging the gap between this approach and other different paradigms of mathematical modeling, as constraint-based approaches. These strategies take advantage of the best features of each method, and deal with the most remarkable limitation—the lack of available experimental information—which affects the accuracy and feasibility of solutions. Parameter estimation helps to solve this problem, but adding more computational cost to the overall process. Moreover, the existing approaches include limitations such as their scalability, flexibility, convergence time of the simulations, among others. The aim is to establish a trade-off between the size of the model and the level of accuracy of the solutions. In this work, we review the state of the art of dynamic modeling and related methods used for metabolic engineering applications, including approaches based on hybrid modeling. We describe approaches developed to undertake issues regarding the mathematical formulation and the underlying optimization algorithms, and that address the phenotype prediction by including available kinetic rate laws of metabolic processes. Then, we discuss how these have been used and combined as the basis to build computational strain optimization methods for metabolic engineering purposes, how they lead to bi-level schemes that can be used in the industry, including a consideration of their limitations.
机译:数学建模是描述生物网络行为的关键过程。最困难的挑战之一是建立模型,以允许对细胞状态的定量预测。最近,这个问题开始通过新颖的计算机方法解决,例如,动态模型的重建,表型预测方法的使用以及通过有效的应变优化算法进行的途径设计。动态模型的使用,其中包括生物系统的详细动力学信息,可能会增加应用范围和表型预测的准确性。作为基于约束的方法,代谢工程学的新努力旨在弥合这种方法与数学建模的其他不同范式之间的差距。这些策略利用每种方法的最佳功能,并应对最显着的局限性-缺少可用的实验信息-这会影响解决方案的准确性和可行性。参数估计有助于解决此问题,但会增加整个过程的计算成本。此外,现有方法还包括诸如可伸缩性,灵活性,仿真的收敛时间等限制。目的是要在模型的大小和解决方案的准确性之间进行权衡。在这项工作中,我们回顾了动态建模的最新技术以及用于代谢工程应用的相关方法,包括基于混合建模的方法。我们描述了开发的方法来处理有关数学公式和基本优化算法的问题,并通过包括代谢过程的可用动力学速率定律来解决表型预测。然后,我们讨论如何使用这些方法并将其作为基础来构建用于代谢工程目的的计算应变优化方法,以及它们如何导致可在工业中使用的双级方案,包括对它们的局限性的考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号