首页> 美国卫生研究院文献>ACS Omega >Nanostructured Silicon–Carbon 3D ElectrodeArchitectures for High-Performance Lithium-Ion Batteries
【2h】

Nanostructured Silicon–Carbon 3D ElectrodeArchitectures for High-Performance Lithium-Ion Batteries

机译:纳米结构的硅碳3D电极高性能锂离子电池的架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Silicon is an attractive anode material for lithium-ion batteries. However, silicon anodes have the issue of volume change, which causes pulverization and subsequently rapid capacity fade. Herein, we report organic binder and conducting diluent-free silicon–carbon 3D electrodes as anodes for lithium-ion batteries, where we replace the conventional copper (Cu) foil current collector with highly conductive carbon fibers (CFs) of 5–10 μm in diameter. We demonstrate here the petroleum pitch (P-pitch) which adequately coat between the CFs and Si-nanoparticles (NPs) between 700 and 1000 °C under argon atmosphere and forms uniform continuous layer of 6–14 nm thick coating along the exterior surfaces of Si-NPs and 3D CFs. The electrodes fabricate at 1000 °C deliver capacities in excess of 2000 mA h g–1 at C/10 and about 1000 mA h g–1 at 5 C rate for 250 cycles in half-cell configuration. Synergistic effect of carbon coating and 3D CF electrode architecture at 1000 °C improve the efficiency of the Si–C composite during long cycling. Full cells using Si–carbon composite electrodeand Li1.2Ni0.15Mn0.55Co0.1O2-based cathode show high open-circuit voltageof >4 V and energy density of >500 W h kg–1. Replacementof organic binder and copper current collector by high-temperaturebinder P-pitch and CFs further enhances energy density per unit areaof the electrode. It is believed that the study will open a new realmof possibility for the development of Li-ion cell having almost doublethe energy density of currently available Li-ion batteries that issuitable for electric vehicles.
机译:硅是锂离子电池有吸引力的负极材料。但是,硅阳极存在体积变化的问题,这会导致粉化并随后使容量快速衰减。在这里,我们报道了有机粘结剂和无稀释剂的导电硅碳3D电极作为锂离子电池的阳极,我们用5-10μm的高导电碳纤维(CF)代替了传统的铜(Cu)箔集电器。直径。我们在这里展示了石油沥青(P-pitch)在氩气气氛下在700至1000°C之间在CF和硅纳米颗粒(NPs)之间充分覆盖,并形成了6-14 nm厚的均匀连续涂层。 Si-NP和3DCF。在1000°C时制造的电极在C / 10时的传递能力超过2000 mA hg -1 ,在5 C速率下在250°C时传递的容量约为1000 mA hg -1 。半电池配置。碳涂层和3D CF电极架构在1000°C时的协同效应提高了长循环中Si–C复合材料的效率。使用硅碳复合电极的全电池和Li1.2Ni0.15Mn0.55Co0.1O2基阴极显示高开路电压> 4 V和能量密度> 500 W h kg –1 。替代高温制备有机粘结剂和铜集流体粘合剂P间距和CF进一步提高了单位面积的能量密度电极的相信这项研究将开辟一个新的领域锂离子电池几乎翻倍发展的可能性当前可用的锂离子电池的能量密度为适用于电动汽车。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号