首页> 美国卫生研究院文献>other >Enhanced Anaerobic Biodegradation of Benzoate Under Sulfate-Reducing Conditions With Conductive Iron-Oxides in Sediment of Pearl River Estuary
【2h】

Enhanced Anaerobic Biodegradation of Benzoate Under Sulfate-Reducing Conditions With Conductive Iron-Oxides in Sediment of Pearl River Estuary

机译:导电性铁氧化物在珠江口沉积物中的硫酸盐还原条件下增强苯甲酸厌氧生物降解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Anaerobic biodegradation of aromatic compounds under sulfate-reducing conditions is important to marine sediments. Sulfate respiration by a single bacterial strain and syntrophic metabolism by a syntrophic bacterial consortium are primary strategies for sulfate-dependent biodegradation of aromatic compounds. The objective of this study was to investigate the potential of conductive iron oxides to facilitate the degradation of aromatic compounds under sulfate-reducing conditions in marine sediments, using benzoate as a model aromatic compound. Here, in anaerobic incubations of sediments from the Pearl River Estuary, the addition of hematite or magnetite (20 mM as Fe atom) enhanced the rates of sulfate-dependent benzoate degradation by 81.8 and 91.5%, respectively, compared with control incubations without iron oxides. Further experiments demonstrated that the rate of sulfate-dependent benzoate degradation accelerated with increased magnetite concentration (5, 10, and 20 mM). The detection of acetate as an intermediate product implied syntrophic benzoate degradation pathway, which was also supported by the abundance of putative acetate- or/and H2-utilizing sulfate reducers from microbial community analysis. Microbial reduction of iron oxides under sulfate-reducing conditions only accounted for 2–11% of electrons produced by benzoate oxidation, thus the stimulatory effect of conductive iron oxides on sulfate-dependent benzoate degradation was not mainly due to an increased pool of terminal electron acceptors. The enhanced rates of syntrophic benzoate degradation by the presence of conductive iron oxides probably resulted from the establishment of a direct interspecies electron transfer (DIET) between syntrophic partners. In the presence of magnetite, Bacteroidetes and Desulfobulbaceae with potential function of extracellular electron transfer might be involved in syntrophic benzoate degradation. Results from this study will contribute to the development of new strategies for in situ bioremediation of anaerobic sediments contaminated with aromatic compounds, and provide a new perspective for the natural attenuation of aromatic compounds in iron-rich marine sediments.
机译:在减少硫酸盐的条件下,芳香族化合物的厌氧生物降解对海洋沉积物很重要。单一细菌菌株的硫酸盐呼吸作用和同养细菌联合体的同养代谢是芳香族化合物的硫酸盐依赖性生物降解的主要策略。这项研究的目的是使用苯甲酸盐作为模型芳香化合物,研究在还原性硫酸盐的条件下,导电氧化铁促进海洋沉积物中芳香化合物降解的潜力。在此,在珠江口沉积物的厌氧培养中,与无铁氧化物的对照培养相比,添加赤铁矿或磁铁矿(Fe原子为20 mM)分别提高了硫酸盐依赖性苯甲酸酯降解的速率,分别为81.8和91.5%。 。进一步的实验表明,随着磁铁矿浓度(5、10和20 mM)的增加,硫酸盐依赖性苯甲酸酯的降解速率加快。乙酸盐作为中间产物的检测暗示了同养型苯甲酸降解途径,这也得到了微生物群落分析中大量使用乙酸盐或/和H2的硫酸盐还原剂的支持。在硫酸盐还原条件下微生物还原氧化铁仅占苯甲酸酯氧化产生的电子的2-11%,因此,导电氧化铁对硫酸盐依赖性苯甲酸酯降解的刺激作用主要不是由于末端电子受体池的增加。导电铁氧化物的存在导致同质苯甲酸分解速率的提高可能是由于在同质养分伙伴之间建立了直接的种间电子转移(DIET)。在磁铁矿的存在下,具有潜在的胞外电子转移功能的拟杆菌科和脱硫鳞茎科可能参与了腐殖酸苯甲酸酯的降解。这项研究的结果将有助于开发新的策略,以原位生物修复被芳香族化合物污染的厌氧沉积物,并为富铁海洋沉积物中芳香族化合物的自然衰减提供新的视角。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号