首页> 美国卫生研究院文献>other >Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems
【2h】

Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems

机译:光遗传学方法原理及其在心脏实验系统中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optogenetic techniques permit studies of excitable tissue through genetically expressed light-gated microbial channels or pumps permitting transmembrane ion movement. Light activation of these proteins modulates cellular excitability with millisecond precision. This review summarizes optogenetic approaches, using examples from neurobiological applications, and then explores their application in cardiac electrophysiology. We review the available opsins, including depolarizing and hyperpolarizing variants, as well as modulators of G-protein coupled intracellular signaling. We discuss the biophysical properties that determine the ability of microbial opsins to evoke reliable, precise stimulation or silencing of electrophysiological activity. We also review spectrally shifted variants offering possibilities for enhanced depth of tissue penetration, combinatorial stimulation for targeting different cell subpopulations, or all-optical read-in and read-out studies. Expression of the chosen optogenetic tool in the cardiac cell of interest then requires, at the single-cell level, introduction of opsin-encoding genes by viral transduction, or coupling “spark cells” to primary cardiomyocytes or a stem-cell derived counterpart. At the system-level, this requires construction of transgenic mice expressing ChR2 in their cardiomyocytes, or in vivo injection (myocardial or systemic) of adenoviral expression systems. Light delivery, by laser or LED, with widespread or multipoint illumination, although relatively straightforward in vitro may be technically challenged by cardiac motion and light-scattering in biological tissue. Physiological read outs from cardiac optogenetic stimulation include single cell patch clamp recordings, multi-unit microarray recordings from cell monolayers or slices, and electrical recordings from isolated Langendorff perfused hearts. Optical readouts of specific cellular events, including ion transients, voltage changes or activity in biochemical signaling cascades, using small detecting molecules or genetically encoded sensors now offer powerful opportunities for all-optical control and monitoring of cellular activity. Use of optogenetics has expanded in cardiac physiology, mainly using optically controlled depolarizing ion channels to control heart rate and for optogenetic defibrillation. ChR2-expressing cardiomyocytes show normal baseline and active excitable membrane and Ca2+ signaling properties and are sensitive even to ~1 ms light pulses. They have been employed in studies of the intrinsic cardiac adrenergic system and of cardiac arrhythmic properties.
机译:光遗传学技术允许通过基因表达的光控微生物通道或允许跨膜离子运动的泵研究可兴奋组织。这些蛋白质的光活化以毫秒精度调节细胞的兴奋性。这篇综述使用来自神经生物学应用的例子总结了光遗传学方法,然后探讨了它们在心脏电生理学中的应用。我们审查了可用的视蛋白,包括去极化和超极化变体,以及G蛋白偶联细胞内信号传导的调节剂。我们讨论了决定微生物视蛋白激发可靠,精确的刺激或沉默电生理活性的能力的生物物理特性。我们还回顾了光谱偏移的变体,提供了增强的组织穿透深度,针对不同细胞亚群的组合刺激或全光读入和读出研究的可能性。然后,在目标心肌细胞中表达所选的光遗传学工具需要在单细胞水平上通过病毒转导引入视蛋白编码基因,或者将“火花细胞”与原代心肌细胞或干细胞衍生的对应物偶联。在系统水平上,这需要构建在其心肌细胞中表达ChR2的转基因小鼠,或体内注射(心肌或全身)腺病毒表达系统。虽然在体外相对直接的方法可能会通过心脏运动和生物组织中的光散射在技术上挑战,但通过激光或LED进行的光传递具有广泛的或多点的照明,尽管在技术上可能会受到挑战。心脏光遗传学刺激的生理学读数包括单细胞膜片钳记录,细胞单层或切片的多单位微阵列记录以及离体的Langendorff灌注心脏的电记录。使用小的检测分子或遗传编码的传感器,对特定细胞事件的光学读数,包括离子瞬变,电压变化或生化信号传导级联中的活性,现在为全光学控制和监视细胞活性提供了强大的机会。光遗传学的应用已在心脏生理学领域得到了扩展,主要是使用光控去极化离子通道来控制心率和进行光遗传除颤。表达ChR2的心肌细胞显示正常的基线和活动的可兴奋膜和Ca 2 + 信号传导特性,甚至对〜1 ms的光脉冲也敏感。它们已被用于研究心脏内在的肾上腺素能系统和心律不齐的特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号