首页> 美国卫生研究院文献>The Journal of General Physiology >Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac
【2h】

Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac

机译:通过控制细菌钠通道NaChBac中的孔电流来跟踪S4运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Voltage-gated sodium channels mediate the initiation and propagation of action potentials in excitable cells. Transmembrane segment S4 of voltage-gated sodium channels resides in a gating pore where it senses the membrane potential and controls channel gating. Substitution of individual S4 arginine gating charges (R1–R3) with smaller amino acids allows ionic currents to flow through the mutant gating pore, and these gating pore currents are pathogenic in some skeletal muscle periodic paralysis syndromes. The voltage dependence of gating pore currents provides information about the transmembrane position of the gating charges as S4 moves in response to membrane potential. Here we studied gating pore current in mutants of the homotetrameric bacterial sodium channel NaChBac in which individual arginine gating charges were replaced by cysteine. Gating pore current was observed for each mutant channel, but with different voltage-dependent properties. Mutating the first (R1C) or second (R2C) arginine to cysteine resulted in gating pore current at hyperpolarized membrane potentials, where the channels are in resting states, but not at depolarized potentials, where the channels are activated. Conversely, the R3C gating pore is closed at hyperpolarized membrane potentials and opens with channel activation. Negative conditioning pulses revealed time-dependent deactivation of the R3C gating pore at the most hyperpolarized potentials. Our results show sequential voltage dependence of activation of gating pore current from R1 to R3 and support stepwise outward movement of the substituted cysteines through the narrow portion of the gating pore that is sealed by the arginine side chains in the wild-type channel. This pattern of voltage dependence of gating pore current is consistent with a sliding movement of the S4 helix through the gating pore. Through comparison with high-resolution models of the voltage sensor of bacterial sodium channels, these results shed light on the structural basis for pathogenic gating pore currents in periodic paralysis syndromes.
机译:电压门控钠通道介导可激发细胞中动作电位的启动和传播。电压门控钠通道的跨膜片段S4驻留在门控孔中,在那里它感应膜电位并控制通道门控。用较小的氨基酸取代单个的S4精氨酸门控电荷(R1-R3)可使离子流流过突变的门控孔,这些门控孔电流在某些骨骼肌周期性麻痹综合征中具有致病性。门控孔电流的电压依赖性提供了有关S4响应膜电位而移动时门控电荷跨膜位置的信息。在这里,我们研究了同四聚体细菌钠通道NaChBac突变体中的门控孔电流,其中单个精氨酸门控电荷被半胱氨酸替代。观察到每个突变通道的门控孔电流,但是具有不同的电压依赖性特性。将第一个(R1C)或第二个(R2C)精氨酸突变为半胱氨酸导致在超极化膜电势(通道处于静止状态)而不是在去极化电势(通道被激活)下的门控电流。相反,R3C门控孔在超极化膜电势下关闭,并随着通道激活而打开。负调节脉冲显示在最超极化电势下,R3C门控孔的时间依赖性失活。我们的结果表明,从R1到R3的门控孔电流的激活具有顺序电压依赖性,并支持取代的半胱氨酸通过门控孔的狭窄部分逐步向外移动,该狭窄部分被野生型通道中的精氨酸侧链密封。门控孔电流的电压依赖性模式与S4螺旋穿过门控孔的滑动运动一致。通过与细菌钠通道电压传感器的高分辨率模型进行比较,这些结果为周期性麻痹综合征中病原性门控孔电流的结构基础提供了启示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号