首页> 美国卫生研究院文献>Frontiers in Bioengineering and Biotechnology >Cyclic Tensile Strain Can Play a Role in Directing both Intramembranous and Endochondral Ossification of Mesenchymal Stem Cells
【2h】

Cyclic Tensile Strain Can Play a Role in Directing both Intramembranous and Endochondral Ossification of Mesenchymal Stem Cells

机译:循环拉伸应变可以在间充质干细胞的膜内和线粒体骨化中发挥作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Successfully regenerating damaged or diseased bone and other joint tissues will require a detailed understanding of how joint specific environmental cues regulate the fate of progenitor cells that are recruited or delivered to the site of injury. The goal of this study was to explore the role of cyclic tensile strain (CTS) in regulating the initiation of mesenchymal stem cell/multipotent stromal cell (MSC) differentiation, and specifically their progression along the endochondral pathway. To this end, we first explored the influence of CTS on the differentiation of MSCs in the absence of any specific growth factor, and secondly, we examined the influence of the long-term application of this mechanical stimulus on markers of endochondral ossification in MSCs maintained in chondrogenic culture conditions. A custom bioreactor was developed to apply uniaxial tensile deformation to bone marrow-derived MSCs encapsulated within physiological relevant 3D fibrin hydrogels. Mechanical loading, applied in the absence of soluble differentiation factors, was found to enhance the expression of both tenogenic (COL1A1) and osteogenic markers (BMP2, RUNX2, and ALPL), while suppressing markers of adipogenesis. No evidence of chondrogenesis was observed, suggesting that CTS can play a role in initiating direct intramembranous ossification. During long-term culture in the presence of a chondrogenic growth factor, CTS was shown to induce MSC re-organization and alignment, increase proteoglycan and collagen production, and to enhance the expression of markers associated with endochondral ossification (BMP2, RUNX2, ALPL, OPN, and COL10A1) in a strain magnitude-dependent manner. Taken together, these findings indicate that tensile loading may play a key role in promoting both intramembranous and endochondral ossification of MSCs in a context-dependent manner. In both cases, this loading-induced promotion of osteogenesis was correlated with an increase in the expression of the osteogenic growth factor BMP2. The results of this study demonstrate the potent role that extrinsic mechanical loading plays in guiding stem cell fate, which must be carefully considered when designing cell and tissue-engineering therapies if they are to realize their clinical potential.
机译:成功地再生受损或患病的骨骼和其他关节组织将需要详细了解关节特定的环境线索如何调节募集或递送至损伤部位的祖细胞的命运。这项研究的目的是探讨循环拉伸应变(CTS)在调节间充质干细胞/多能基质细胞(MSC)分化的起始过程中的作用,尤其是它们在沿软骨内途径的进展中的作用。为此,我们首先探讨了在没有任何特定生长因子的情况下CTS对MSCs分化的影响,其次,我们研究了长期使用这种机械刺激对维持MSCs软骨内骨化标记物的影响在软骨培养条件下。开发了定制的生物反应器,以将单轴拉伸变形应用于封装在生理相关3D纤维蛋白水凝胶中的骨髓来源的MSC。发现在没有可溶性分化因子的情况下施加机械负荷可增强腱生性(COL1A1)和成骨性标志物(BMP2,RUNX2和ALPL)的表达,同时抑制脂肪形成的标志物。没有观察到软骨形成的证据,这表明CTS可以在启动直接膜内骨化中发挥作用。在软骨生长因子存在下的长期培养过程中,CTS被证明可诱导MSC重组和排列,增加蛋白聚糖和胶原蛋白的生成,并增强与软骨内骨化相关的标志物的表达(BMP2,RUNX2,ALPL, OPN和COL10A1)以应变幅度相关的方式。综上所述,这些发现表明,拉伸载荷可能以依赖于上下文的方式在促进MSC的膜内和软骨内骨化中起关键作用。在这两种情况下,这种负载诱导的成骨促进与成骨生长因子BMP2表达的增加相关。这项研究的结果证明了外源性机械负荷在指导干细胞命运方面发挥着重要作用,在设计细胞和组织工程疗法以实现其临床潜力时必须仔细考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号