首页> 美国卫生研究院文献>The Journal of General Physiology >Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium
【2h】

Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium

机译:体积激活的氯离子渗透性可以在紧密上皮的数学模型中介导细胞体积调节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cell volume regulation during anisotonic challenge is investigated in a mathematical model of a tight epithelium. The epithelium is represented as compliant cellular and paracellular compartments bounded by mucosal and serosal bathing media. Model variables include the concentrations of Na, K, and Cl, hydrostatic pressure, and electrical potential, and the mass conservation equations have been formulated for both steady- state and time-dependent problems. Ionic conductance is represented by the Goldman constant field equation (Civan, M.M., and R.J. Bookman. 1982. Journal of Membrane Biology. 65:63-80). A basolateral cotransporter of Na, K, and Cl with 1:1:2 stoichiometry (Geck, P., and E. Heinz. 1980. Annals of the New York Academy of Sciences. 341:57-62.) and volume-activated basolateral ion permeabilities are incorporated in the model. MacRobbie and Ussing (1961. Acta Physiologica Scandinavica. 53:348-365.) reported that the cells of frog skin exhibit osmotic swelling followed by a volume regulatory decrease (VRD) when the serosal bath is diluted to half the initial osmolality. Similar regulation is achieved in the model epithelium when both a basolateral cotransporter and a volume-activated Cl permeation path are included. The observed transepithelial potential changes could only be simulated by allowing volume activation of the basolateral K permeation path. The fractional VRD, or shrinkage as percent of initial swelling, is examined as a function of the hypotonic challenge. The fractional VRD increases with increasing osmotic challenge, but eventually declines under the most severe circumstances. This analysis demonstrates that the VRD response depends on the presence of adequate intracellular chloride stores and the volume sensitivity of the chloride channel.
机译:在紧密上皮的数学模型中研究了等渗激发过程中的细胞体积调节。上皮表示为由粘膜和浆膜沐浴介质界定的顺应性细胞和旁细胞区室。模型变量包括Na,K和Cl的浓度,静水压力和电势,并且针对稳态和时间相关问题制定了质量守恒方程。离子电导由高曼常数场方程表示(Civan,M.M。和R.J.Bookman.1982。膜生物生物学杂志(Journal of Membrane Biology)65:63-80)。化学计量比为1:1:2的Na,K和Cl的基底外侧共转运子(Geck,P。和E. Heinz。1980.纽约科学院年鉴。341:57-62。)并激活体积基底外侧离子通透性被纳入模型。 MacRobbie and Ussing(1961. Acta Physiologica Scandinavica。53:348-365。)报告说,当浆膜浴液稀释至初始重量摩尔渗透压浓度的一半时,青蛙皮肤的细胞呈现渗透性溶胀,随后体积调节降低(VRD)。当同时包括基底外侧共转运蛋白和体积激活的Cl渗透路径时,在模型上皮中实现了类似的调节。观察到的跨上皮电位变化只能通过允许基底外侧钾渗透路径的体积激活来模拟。根据低渗刺激检查VRD分数或收缩率(占初始肿胀百分比)。 VRD分数随渗透挑战的增加而增加,但在最严重的情况下最终下降。该分析表明,VRD响应取决于细胞内足够的氯离子存储量和氯离子通道的体积敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号