首页> 美国卫生研究院文献>Journal of Applied Clinical Medical Physics >Quantitative evaluation of a cone‐beam computed tomography–planning computed tomography deformable image registration method for adaptive radiation therapy
【2h】

Quantitative evaluation of a cone‐beam computed tomography–planning computed tomography deformable image registration method for adaptive radiation therapy

机译:锥形束计算机体层摄影术的定量评估-计划计算机体层摄影术可变形图像配准方法用于自适应放射治疗

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deformable (non‐rigid) registration is an essential tool in both adaptive radiation therapy and image‐guided radiation therapy to account for soft‐tissue changes during the course of treatment. The evaluation method most commonly used to assess the accuracy of deformable image registration is qualitative human evaluation. Here, we propose a method for systematically measuring the accuracy of an algorithm in recovering artificially introduced deformations in cases of rigid geometry, and we use that method to quantify the ability of a modified basis spline (B‐Spline) registration algorithm to recover artificially introduced deformations. The evaluation method is entirely computer‐driven and eliminates biased interpretation associated with human evaluation; it can be applied to any chosen method of image registration.Our method involves using planning computed tomography (PCT) images acquired with a conventional CT simulator and cone‐beam computed tomography (CBCT) images acquired daily by a linear accelerator–mounted kilovoltage image system in the treatment delivery room. The deformation that occurs between the PCT and daily CBCT images is obtained using a modified version of the B‐Spline deformable model designed to overcome the low soft‐tissue contrast and the artifacts and distortions observed in CBCT images. Clinical CBCT images and contours of phantom and central nervous system cases were deformed (warped) with known random deformations. In registering the deformed with the non‐deformed image sets, we tracked the algorithm's ability to recover the original, non‐deformed set. Registration error was measured as the mean and maximum difference between the original and the registered surface contours from outlined structures. Using this approach, two sets of tests can be devised. To measure the residual error related to the optimizer's convergence performance, the warped CBCT image is registered to the unwarped version of itself, eliminating unknown factors such as noise and positioning errors. To study additional errors introduced by artifacts and noise in the CBCT image, the warped CBCT image is registered to the original PCT image.Using a B‐Spline deformable image registration algorithm, mean residual error introduced by the algorithm's performance on noise‐free images was less than 1 mm, with a maximum of 2 mm. The chosen deformable image registration model was capable of accommodating significant variability in structures over time, because the artificially introduced deformation magnitude did not significantly influence the residual error. On the second type of test, noise and artifacts reduced registration accuracy to a mean of 1.33 mm and a maximum of 4.86 mm.The accuracy of deformable image registration can be easily and consistently measured by evaluating the algorithm's ability to recover artificially introduced deformations in rigid cases in which the true solution is known a priori. The method is completely automated, applicable to any chosen registration algorithm, and does not require user interaction of any kind.PACS numbers: 87.57.Gg, 87.57.Ce, 87.62.+n
机译:可变形(非刚性)配准是自适应放射治疗和图像引导放射治疗中必不可少的工具,可以说明治疗过程中的软组织变化。最常用于评估可变形图像配准准确性的评估方法是定性人类评估。在此,我们提出了一种系统地测量在刚性几何情况下恢复人工引入的变形的算法准确性的方法,并使用该方法来量化修正的基础样条(B-Spline)配准算法人工恢复的能力。变形。评估方法完全由计算机驱动,消除了与人工评估有关的偏见。它可以应用于任何选定的图像配准方法。我们的方法涉及使用通过常规CT模拟器获取的计划计算机断层扫描(PCT)图像和由安装在直线加速器上的千伏图像系统每天获取的锥束计算机断层扫描(CBCT)图像。在治疗室。 PCT和每日CBCT图像之间发生的变形是使用B-样条线可变形模型的修改版本获得的,该模型旨在克服低的软组织对比度以及CBCT图像中观察到的伪影和变形。幻影和中枢神经系统病例的临床CBCT图像和轮廓因已知的随机变形而变形(翘曲)。在将变形的图像与未变形的图像集配准时,我们跟踪了算法恢复原始的,未变形的图像集的能力。配准误差的测量是轮廓结构原始表面和配准表面轮廓之间的平均差和最大差。使用这种方法,可以设计出两组测试。为了测量与优化器的收敛性能有关的残留误差,将变形的CBCT图像记录到其自身的未变形版本中,从而消除了诸如噪声和定位误差之类的未知因素。为了研究由CBCT图像中的伪影和噪声引起的其他误差,将变形的CBCT图像配准到原始PCT图像。使用B样条可变形图像配准算法,该算法在无噪声图像上的性能引入的平均残留误差为小于1毫米,最大2毫米。选择的可变形图像配准模型能够适应结构随时间的显着变化,因为人工引入的变形幅度不会显着影响残余误差。在第二种类型的测试中,噪声和伪影将套准精度降低到平均1.33毫米和最大4.86毫米。可变形的图像套准的精度可以通过评估算法恢复刚性中人为引入的变形的能力来轻松而始终如一地测量。先验已知真实解决方案的情况。该方法是完全自动化的,适用于任何选择的注册算法,并且不需要任何类型的用户交互。PACS编号:87.57.Gg,87.57.Ce,87.62。+ n

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号