首页> 美国卫生研究院文献>Nanoscale Research Letters >Nano-scale machining of polycrystalline coppers - effects of grain size and machining parameters
【2h】

Nano-scale machining of polycrystalline coppers - effects of grain size and machining parameters

机译:纳米级多晶铜加工-晶粒尺寸和加工参数的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, a comprehensive investigation on nano-scale machining of polycrystalline copper structures is carried out by molecular dynamics (MD) simulation. Simulation cases are constructed to study the impacts of grain size, as well as various machining parameters. Six polycrystalline copper structures are produced, which have the corresponding equivalent grain sizes of 5.32, 6.70, 8.44, 13.40, 14.75, and 16.88 nm, respectively. Three levels of depth of cut, machining speed, and tool rake angle are also considered. The results show that greater cutting forces are required in nano-scale polycrystalline machining with the increase of depth of cut, machining speed, and the use of the negative tool rake angles. The distributions of equivalent stress are consistent with the cutting force trends. Moreover, it is discovered that in the grain size range of 5.32 to 14.75 nm, the cutting forces and equivalent stress increase with the increase of grain size for the nano-structured copper, while the trends reserve after the grain size becomes even higher. This discovery confirms the existence of both the regular Hall–Petch relation and the inverse Hall–Petch relation in polycrystalline machining, and the existence of a threshold grain size allows one of the two relations to become dominant. The dislocation-grain boundary interaction shows that the resistance of the grain boundary to dislocation movement is the fundamental mechanism of the Hall–Petch relation, while grain boundary diffusion and movement is the reason of the inverse Hall–Petch relation.
机译:在这项研究中,通过分子动力学(MD)模拟对多晶铜结构的纳米级加工进行了全面的研究。模拟案例的构建是为了研究晶粒尺寸以及各种加工参数的影响。产生了六个多晶铜结构,分别具有5.32、6.70、8.44、13.40、14.75和16.88 nm的相应等效晶粒尺寸。还考虑了三个级别的切削深度,加工速度和刀具前角。结果表明,随着切割深度,加工速度的增加和负刀具前角的使用,在纳米级多晶加工中需要更大的切削力。当量应力的分布与切削力趋势一致。此外,发现在5.32至14.75nm的晶粒尺寸范围内,纳米晶粒铜的切削力和等效应力随着晶粒尺寸的增加而增加,而在晶粒尺寸变得更高后趋势趋势得以保留。这一发现证实了多晶加工中既存在规则的Hall-Petch关系又存在逆Hall-Petch关系,并且阈值晶粒尺寸的存在使这两种关系之一成为主导。位错-晶界相互作用表明,晶界对位错运动的抵抗力是霍尔-Petch关系的基本机理,而晶界的扩散和运动是Hall-Petch关系逆的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号