首页> 美国卫生研究院文献>Nucleic Acids Research >Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli
【2h】

Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli

机译:CRP-cAMP和PII-Ntr系统之间的相互作用在大肠杆菌的碳代谢和氮同化之间形成了新的调控网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In Escherichia coli, utilization of carbon sources is regulated by the phosphoenolpyruvate-dependent phosphotransferase system (PTS), which modulates the intracellular levels of cAMP. The cAMP receptor protein (CRP) controls the transcription of many catabolic genes. The availability of nitrogen is sensed by the PII protein at the level of intracellular glutamine. Glutamine is transported mainly by GlnHPQ, and synthesized by glutamine synthetase (GS) encoded by glnA. Previous studies suggest that CRP affects nitrogen assimilation. Here we showed that at least two mechanisms are involved. First, CRP activates glnHp1 via synergistic binding with sigma 70 RNA polymerase (E>σ70) and represses glnHp2. As a consequence, in the presence of glutamine, the overall enhancement of glnHPQ expression alters GlnB signalling and de-activates glnAp2. Second, in vitro studies show that CRP can be recruited by sigma 54 holoenzyme (E>σ54) to a site centred at −51.5 upstream of glnAp2. CRP-induced DNA-bending prevents the nitrogen regulation protein C (NtrC) activator from approaching the activator-accessible face of the promoter-bound E>σ54 closed complex, and inhibits glnAp2. Therefore, as the major transcriptional effector of the ‘glucose effect’, CRP affects both the signal transduction pathway and the overall geometry of the transcriptional machinery of components of the nitrogen regulon.
机译:在大肠杆菌中,碳源的利用受到磷酸烯醇丙酮酸依赖性磷酸转移酶系统(PTS)的调节,该系统调节细胞内cAMP的水平。 cAMP受体蛋白(CRP)控制许多分解代谢基因的转录。 PII蛋白在细胞内谷氨酰胺水平检测氮的有效性。谷氨酰胺主要由GlnHPQ转运,并由glnA编码的谷氨酰胺合成酶(GS)合成。先前的研究表明,CRP影响氮同化。在这里,我们表明至少涉及两种机制。首先,CRP通过与sigma 70 RNA聚合酶(E >σ 70 )的协同结合激活glnHp2,并抑制glnHp2。结果,在存在谷氨酰胺的情况下,glnHPQ表达的整体增强会改变GlnB信号传导,并使glnAp2失活。其次,体外研究表明CRP可通过σ54全酶(E >σ 54 )募集到位于glnAp2上游-51.5中心的位点。 CRP诱导的DNA弯曲可防止氮调节蛋白C(NtrC)活化剂接近启动子结合的E >σ 54 封闭复合物的活化剂可及面,并抑制glnAp2。因此,CRP作为“葡萄糖效应”的主要转录效应子,不仅影响信号传导途径,而且影响氮调节子组分转录机制的整体几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号