首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways
【2h】

PNAS Plus: Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways

机译:PNAS Plus:配备重组的一碳同化途径的工程化大肠杆菌对甲酸和二氧化碳的同化作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gaseous one-carbon (C1) compounds or formic acid (FA) converted from CO2 can be an attractive raw material for bio-based chemicals. Here, we report the development of Escherichia coli strains assimilating FA and CO2 through the reconstructed tetrahydrofolate (THF) cycle and reverse glycine cleavage (gcv) pathway. The Methylobacterium extorquens formate-THF ligase, methenyl-THF cyclohydrolase, and methylene-THF dehydrogenase genes were expressed to allow FA assimilation. The gcv reaction was reversed by knocking out the repressor gene (gcvR) and overexpressing the gcvTHP genes. This engineered strain synthesized 96% and 86% of proteinogenic glycine and serine, respectively, from FA and CO2 in a glucose-containing medium. Native serine deaminase converted serine to pyruvate, showing 4.5% of pyruvate-forming flux comes from FA and CO2. The pyruvate-forming flux from FA and CO2 could be increased to 14.9% by knocking out gcvR, pflB, and serA, chromosomally expressing gcvTHP under trc, and overexpressing the reconstructed THF cycle, gcvTHP, and lpd genes in one vector. To reduce glucose usage required for energy and redox generation, the Candida boidinii formate dehydrogenase (Fdh) gene was expressed. The resulting strain showed specific glucose, FA, and CO2 consumption rates of 370.2, 145.6, and 14.9 mg⋅g dry cell weight (DCW)−1⋅h−1, respectively. The C1 assimilation pathway consumed 21.3 wt% of FA. Furthermore, cells sustained slight growth using only FA and CO2 after glucose depletion, suggesting that combined use of the C1 assimilation pathway and C. boidinii Fdh will be useful for eventually developing a strain capable of utilizing FA and CO2 without an additional carbon source such as glucose.
机译:由二氧化碳转化为气态的一碳(C1)化合物或甲酸(FA)可能是生物基化学品的诱人原料。在这里,我们报告通过重构的四氢叶酸(THF)循环和反向甘氨酸裂解(gcv)途径同化FA和CO2的大肠杆菌菌株的发展。表达的甲基杆菌敲除甲酸-THF连接酶,亚甲基-THF环水解酶和亚甲基-THF脱氢酶基因以允许FA同化。通过敲除阻遏物基因(gcvR)和过表达gcvTHP基因来逆转gcv反应。该工程菌株在含葡萄糖的培养基中分别从FA和CO2合成了96%和86%的蛋白质生成的甘氨酸和丝氨酸。天然丝氨酸脱氨酶将丝氨酸转变为丙酮酸,表明形成丙酮酸的通量的4.5%来自FA和CO2。通过敲除gcvR,pflB和serA,在trc下以染色体方式表达gcvTHP,并在一个载体中过表达重建的THF循环,gcvTHP和lpd基因,可以将FA和CO2中的丙酮酸形成通量提高至14.9%。为了减少产生能量和氧化还原所需的葡萄糖用量,表达了博伊丁氏假丝酵母甲酸脱氢酶(Fdh)基因。所得菌株显示葡萄糖,FA和CO2的单位消耗率分别为370.2、145.6和14.9 mg·g干细胞重量(DCW) -1 ⋅h -1 ,分别。 C1同化途径消耗了21.3 wt%的FA。此外,葡萄糖耗竭后,仅使用FA和CO2的细胞就能维持轻微的生长,这表明C1同化途径和Boidinii Fdh的联合使用对于最终开发出能够利用FA和CO2而无需额外碳源的菌株非常有用。葡萄糖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号