首页> 美国卫生研究院文献>Physiological Reports >Excitation of skeletal muscle is a self-limiting process due to run-down of Na+ K+ gradients recoverable by stimulation of the Na+ K+ pumps
【2h】

Excitation of skeletal muscle is a self-limiting process due to run-down of Na+ K+ gradients recoverable by stimulation of the Na+ K+ pumps

机译:由于Na +K +梯度下降骨骼肌的兴奋是一个自限性过程可以通过刺激Na +K +泵来恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The general working hypothesis of this study was that muscle fatigue and force recovery depend on passive and active fluxes of Na+ and K+. This is tested by examining the time-course of excitation-induced fluxes of Na+ and K+ during 5–300 sec of 10–60 Hz continuous electrical stimulation in rat extensor digitorum longus (EDL) muscles in vitro and in vivo using 22Na and flame photometric determination of Na+ and K+. 60 sec of 60 Hz stimulation rapidly increases 22Na influx, during the initial phase (0–15 sec) by 0.53 μmol(sec)−1(g wet wt.)−1, sixfold faster than in the later phase (15–60 sec). These values agree with flame photometric measurements of Na+ content. The progressive reduction in the rate of excitation-induced Na+ uptake is likely to reflect gradual loss of excitability due to accumulation of K+ in the extracellular space and t-tubules leading to depolarization. This is in keeping with the concomitant progressive loss of contractile force previously demonstrated. During electrical stimulation rat muscles rapidly reach high rates of active Na+, K+-transport (in EDL muscles a sevenfold increase and in soleus muscles a 22-fold increase), allowing efficient and selective compensation for the large excitation-induced passive Na+, K+-fluxes demonstrated over the latest decades. The excitation-induced changes in passive fluxes of Na+ and K+ are both clearly larger than previously observed. The excitation-induced reduction in [Na+]o contributes considerably to the inhibitory effect of elevated [K+]o. In conclusion, excitation-induced passive and active Na+ and K+ fluxes are important causes of muscle fatigue and force recovery, respectively.
机译:该研究的一般工作假设是,肌肉疲劳和力量恢复取决于Na + 和K + 的被动和主动通量。通过检查大鼠伸肌10-60 Hz连续电刺激5–300秒内Na + 和K + 的激发感应通量的时程进行测试用 22 Na进行体外和体内指长肌(EDL)肌肉的火焰光度法测定Na + 和K + 。 60 Hz刺激中的60秒在初始阶段(0-15秒)迅速增加了 22 Na流入量,增加了0.53μmol(sec) -1 (g湿重)。 -1 ,比后期(15-60秒)快六倍。这些值与Na + 含量的火焰光度测量结果一致。兴奋引起的Na + 摄取速率的逐渐降低可能反映出由于K + 在细胞外空间和t形小管中的积累而导致的兴奋性逐渐降低。去极化。这与先前证明的伴随的收缩力的逐渐损失是一致的。在电刺激过程中,大鼠肌肉迅速达到较高的活性Na + ,K + 转运率(EDL肌肉增加7倍,比目鱼肌增加22倍),可以对最近几十年来表现出的大量激发诱导的被动Na + ,K + 通量进行有效和选择性的补偿。 Na + 和K + 的无源通量的激发引起的变化都明显大于以前观察到的。激发诱导的[Na + ] o的降低对[K + ] o升高的抑制作用有很大贡献。总之,激发引起的被动和主动Na + 和K + 通量分别是肌肉疲劳和力量恢复的重要原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号